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The Problem : Combustion Modelling

w . . . . .
T * Multi-physics problem: chemical kinetics,
T: 750 1250 1750 2250 2750 3250 turbulence, acoustics, heat transfer, phase
' change, radiation

* Multi-scale challenges: from the sub micro-
meter to the meter scale with strong
interactions among all scales

Modelling is required to render this problem
numerically tractable.

*| Two common physical models are:
* Turbulence modelling (not discussed today)
* Combustion modelling
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A Widely Used Approach : FVPA

* Flamelet : to simplify calculation, imagine a corrugated,
turbulent flame is made of a laminar flamelet coming
from directing fuel and oxidizer directly at each other

* Strain rate : proportional to the velocity difference of
the propellants in this setup

* Flamelet-Progress Variable Approach (FPVA): Flamelet
can be completely characterized by the strain rate.

* So, we can precompute a combustion manifold of
all possible values as a 3D table

* Strain rate depends on:
e Z: mixture fraction (between 0: oxidizer and 1: fuel)

 C: progress variation (defines the “evolution” of combustion at c
a given mixture fraction)

* P: pressure z

* Combustion Simulations use this table to provide the
local chemical and thermodynamic state of the
Combustion WATE R Loo-
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Increasing Demand for More Complex Simulations

* Modern combustion simulations require us to
account for additional physical processes beyond
(Z) mixture fraction, (C) progress and (P) pressure,
such as:

* Pressure variations (eg. rocket combustion)

* Heat loss at the walls/ Radiation

* Complex thermodynamics

e Multi-fuel systems (multiple mixture fractions)

* Incorporating new physics into the flamelet
combustion manifold requires higher-dimensional
tables that quickly become intractable

* Example:

e Standard 3D table will have:
200 X 200 X 200 X 15 entries =127 entries

* Extended table with pressure and heat loss:
1207 X 200 X 200 = 4.8 entries

WATERLOQO.

WATERLOO ARTIFICIAL INTELLIGENCE INSTITUTE



Prior non-ML Approaches

*|Increasing the discretization to deal with size = less accurate

* Functional Representations = piecemeal approaches

* Polynomial basis functions [Weisse, 2018]

* Bézier patches to fit parts of the energy curves [Yao, 2018]
- These are compact and fast once they are set up, but still require nonlinear

increase in parameters as dimensions grow

*Use PCA and other Dimensionality Reduction method to project back

down to 3D [Najafi-Yazdi, 2012]
— not sustainable for more complex demands
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So Why not use Neural Networks?

Current Paradigm Al enhanced combustion modelling
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Benefits

* Perfect supervised training data can be made available (expensive PDE computations)
* Interpolation comes for free

* Model size does not increase as number of inputs increase
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Prior ML Approaches

*[lhme, 2009] Multi-Layer Perceptron
* Used a simple MLP to replace the tabular representation

* Used a fixed loss metric, focused on varying the number of nodes and layers to
maximize that.

* Used Sigmoid activation functions, standard backprop, no regularization
— Their Conclusion: Found it was generalizable but much less accurate than
table. Community moved on to other things.

*[Lapeyre, 2018] Autoencoder + CNN:
 Extract structure for part of the flame of given length using a CNN

* Train an autoencoder with a U-Net structure from CNN features on two
consecutive time steps

* Goal is to predict the third time step
- Promising, but not directly applicable to flamelet-based approaches.
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So we tried it again...

Straightforward Fully Connected Deep NN Architecture Other Fully Connected Networks for each Task

512 512 i H,0
% i P Prediction Output Hidden Layers
64/‘EV —>Q " Temperature (T)| (64,128,512,512,1024, 1024)
conca Tl = Source Term (W) (64,128,512,512,512, 512)
Pressure = Heat Release (HR)|(64,128,512,512,1024,2048, 2048)
Progress Variable Fc || Fc || Fc [| FC Fe FC }O 02
Mixture Fraction
~ i .
AN }o OH Why not just one network?
4 :>O i We could, but numerical scales are
L FC 202
: very different, so it didn’t work as
Prediction of proportions of output components (ie. Species) well, would need much more data.

Activation Function: Leaky RelLU
Optimizer: Adam
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Regularization Methods

* Problem: Oscillating output for the temperature

* Solution: Experimented with different regularization techniques to reduce
overfitting to noisy data. We found that L1+L2 regularization worked best.

* We also tried
* Batch normalization — some improvements

* Dropout (p=.5) — did quite badly
* Layer Normalization — almost as good as L1+L2 for this domain

* Problem: Classification Errors

*Solution: Use an ensemble of models.
* This is achieved by training 5 networks with different learning rates and random seeds

* Prediction is average of top four networks based on variance estimate
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Regularization Methods

°Problem: Error on Areas with Large Variation

*Solution: Over-sample “hard examples” during training [Lin, 2017]
* Defined as examples having error larger than median error of the batch.

* The training batches are created by sampling with replacement 75% hard and
25% easy examples from the sampling batch.

* Also used gradient clipping here to increase
stability

*Problem: “Dying ReLU” — losing too much
information on the negative gradient cases

Leaky RelLU: y=0.01x

¢ SOl Utio n : U Se I—ea ky Re LU [G IO rOt) 20 1 1] https://medium.com/@danging/a-practical-guide-to-relu-b83ca804f1f7
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Results: Prediction of Proportion of Chemical Outputs

Standard
Range Error Mean 1raining  Validation
(Omax — Omin) Range (Eo) Error Accuracy Accuracy
H 0.0219 0.0001 0.00431 29.23 21.44
O> 1.0 0.005 0.3419 20.17 12.56
O 0.0665 0.00033 0.00892 55.79 37.43
OH 0.1279 0.00064 0.0345 56.91 43.34
Ho 1.0 0.005 0.2606 38.40 25.41
H>0 0.8865 0.0044 0.6056 26.19 14.59
HO> 0.0142 7.1e — 05 0.00137 60.36 41.42
H202 0.0091 4.5e — 05 0.00259 55.92 36.05
HR(J/m?) 93.4e + 81 6.4c +78 1.05e+ 76  81.23 81.18
T(K) 3295 34.47 82.44 61.97 54.60
4% 30 0.149 3.023 71.55 58.144
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Results: Ensembles on Varying Pressure

Results for Ensemble Network (P=25) Results for Ensemble Network (P=33) Results for Ensemble Network (P=42)
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Results: Ablation Study on Three Regularization Approaches

Results for Ensemble Network (P=25) Results for L1L2 regularization (P=25)
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Some Results

Advantage of L1L2

- No Regularization | L1L2 Regularization Layer Normalization | Batch Normalization

Accuracy 31.44 39.83 23.63 12.28

Advantage of Over Sampling Hard Cases

- Uniform Sampling Over Sampling Ensemble Model

Accuracy 39.83 48.87 47.73

Computational Benefits of Combined Methods over Tabular

_ Parallel Inference Time (in ms) Serial Inference Time Memory Requirements (in
(in's) MB)

Tabulation Method 1.2 x10° 10.997 184.64
Deep Neural Network 13.92 55.27 24.158
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Next Steps: Proof of Concept for Simulation Results

Using OpenFOAM simulator a single step of simulation was replace with the
DNN predicted temperature and then run forward.

— 2370, — 2370.

— 1680.

— 989.9

Var: T Vo T
-_ 3060, - 3216.
— 2370. — 2486,
DNN: | 1680, — 1755,
— — 989.9 — 1024,
[ — l 300.0 293.6
Var: T 3060 - 3060.
| [
Tabular:
I —

_d‘ -
— 1680.
J | —989.9

300.0

300.0

| WATERLOO.
Mark Crowley - Combustion Model DNNs 17

WATERLOO ARTIFICIAL INTELLIGENCE INSTITUTE



Conclusions

*Main takeaway
* Sometimes it’s worth trying an old idea again with new approaches
* Deep Neural Networks can be use for this kind of complex lookup mapping

* There are a huge number of regularization methods that need to be explored in
these kind of applied problems, a thorough experimental methodology for
comparing their effects is essential

* Next Steps

* Potential for increased complexity of combustion simulations with more
dimensions is massive

* Connect the DNN models directly to a simulator and run entire dynamics
through to compare results on 3D case

* Demonstrate ability to do more
* Try 5-8 input values with more supervised data
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1o augment human decision making in complex domains
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