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•Multi-physics problem: chemical kinetics, 
turbulence, acoustics, heat transfer, phase 
change, radiation
•Multi-scale challenges: from the sub micro-

meter to the meter scale with strong 
interactions among all scales

Modelling is required to render this problem 
numerically tractable. 
Two common physical models are:
• Turbulence modelling (not discussed today) 
• Combustion modelling

The Problem : Combustion Modelling

Source: Ihme, AIAA SciTech Forum, 2019
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• Flamelet : to simplify calculation, imagine a corrugated, 
turbulent flame is made of a laminar flamelet coming 
from directing fuel and oxidizer directly at each other
• Strain rate : proportional to the velocity difference of 

the propellants in this setup
• Flamelet-Progress Variable Approach (FPVA): Flamelet 

can be completely characterized by the strain rate. 
• So, we can precompute a combustion manifold of 

all possible values as a 3D table
• Strain rate depends on:
• Z: mixture fraction (between 0: oxidizer and 1: fuel)
• C: progress variation (defines the “evolution” of combustion at 

a given mixture fraction)
• P: pressure

• Combustion Simulations use this table to provide the 
local chemical and thermodynamic state of the 
combustion

A Widely Used Approach : FVPA



•Modern combustion simulations require us to 
account for additional physical processes beyond 
(Z) mixture fraction, (C) progress and (P) pressure, 
such as:
• Pressure variations (eg. rocket combustion)
• Heat loss at the walls/ Radiation
• Complex thermodynamics
• Multi-fuel systems (multiple mixture fractions)

• Incorporating new physics into the flamelet 
combustion manifold requires higher-dimensional 
tables that quickly become intractable
•Example: 
• Standard 3D table will have:  

200 X 200 X 200 X 15 entries      = 127 entries
• Extended table with pressure and heat loss: 

1207 X 200 X 200    =  4.811 entries

Increasing Demand for More Complex Simulations



• Increasing the discretization to deal with size à less accurate
•Functional Representations à piecemeal approaches
• Polynomial basis functions [Weisse, 2018]
• Bézier patches to fit parts of the energy curves [Yao, 2018]
à These are compact and fast once they are set up, but still require nonlinear 
increase in parameters as dimensions grow

•Use PCA and other Dimensionality Reduction method to project back 
down to 3D [Najafi-Yazdi, 2012]
à not sustainable for more complex demands

Prior non-ML Approaches
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So Why not use Neural Networks?
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Benefits
• Perfect supervised training data can be made available (expensive PDE computations)
• Interpolation comes for free
• Model size does not increase as number of inputs increase



• [Ihme, 2009] Multi-Layer Perceptron 
• Used a simple MLP to replace the tabular representation
• Used a fixed loss metric, focused on varying the number of nodes and layers to

maximize that.
• Used Sigmoid activation functions, standard backprop, no regularization
à Their Conclusion: Found it was generalizable but much less accurate than 
table. Community moved on to other things.

• [Lapeyre, 2018] Autoencoder + CNN:
• Extract structure for part of the flame of given length using a CNN
• Train an autoencoder with a U-Net structure from CNN features on two 

consecutive time steps
• Goal is to predict the third time step
à Promising, but not directly applicable to flamelet-based approaches.

Prior ML Approaches
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So we tried it again…
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(1, 2, 5, 10, 20, 30, 35, 40, 50)bar and the associated progress variable (C) and mix-
ture fraction (Z). We reserve flames at pressure values (15, 25, 33, 42)bar for test-
ing purposes. The validation data set is generated by sampling sections of the
flames in the training data set. The data was generated using FlameMaster, a 1D
solver for the solution of the laminar, di↵usion flamelet equations. The flamelets
were generated at varying strain rates, from equilibrium combustion to nearly
the quenched solution at varying base pressure levels. For all flamelets, the in-
flow temperature of the fuel and oxidizer remain constant. At each condition,
the flamelets are solved with 1001 grid points with local mesh adaptation.

3.1 Neural Network Design

Table 1: Neural Network design used for prediction. All models use fully connected
layers with Leaky ReLU as the activation function. Only layers in bold are regularized.

Prediction Output Hidden Layers

Temperature (T ) (64,128,512,512,1024, 1024)
Source Term (W ) (64,128,512,512,512, 512)

Heat Release (HR) (64,128,512,512,1024,2048, 2048)

Four di↵erent neural networks are designed for predicting the Species, Heat
Release, Temperature and Source Term. The species show a high correlation
in combustion time series as the total mass in the systems stays constant. In
our experiments for species we predict the fraction of total mass which belongs
to each species. In the neural network shown in Fig. 2 the network shares a
common model for the first 7 layers and a separate fully connected head of
64 units to predict individual species. This improves the prediction accuracy
and also reduces the memory requirements for the model. Note that we also
introduce function generators (FG) to augment the input data with the function
set (sin, cos, square, exp, log) applied over the inputs (Z,C, P ). The FG output
is concatenated to the input of network. We found that using FGs leads to faster
training convergence by providing common transformations right in the training
data.

The network design for T and W is similar to the design used for the predic-
tion of species, see Table. 1. However, even though T and W are highly corre-
lated, their numerical scales are vastly di↵erent, thus, we use separate networks
for them. We use Leaky Rectified Linear Units (ReLu) as the activation function
for all layers in our neural network models unless otherwise specified [4]. All
biases are initialized to 0.0 and weights are initialized using He initialization [6]
with sampling from a normal distribution. All inputs to the network are stan-
dardized using Z-score standardization. We follow the same procedure for test
set, where we use the mean and variance of the training data set to normalize

Straightforward Fully Connected Deep NN Architecture

Prediction of proportions of output components (ie. Species)

Other Fully Connected Networks for each Task

Why not just one network?
We could, but numerical scales are 
very different, so it didn’t work as 
well, would need much more data.

Activation Function: Leaky ReLU
Optimizer: Adam



•Problem: Oscillating output for the temperature
•Solution: Experimented with different regularization techniques to reduce 

overfitting to noisy data. We found that L1+L2 regularization worked best.
•We also tried
• Batch normalization – some improvements
• Dropout (p=.5) – did quite badly
• Layer Normalization – almost as good as L1+L2 for this domain

•Problem: Classification Errors
•Solution: Use an ensemble of models. 
• This is achieved by training 5 networks with different learning rates and random seeds
• Prediction is average of top four networks based on variance estimate

Regularization Methods

Mark Crowley - Combustion Model DNNs 11



•Problem: Error on Areas with Large Variation
•Solution: Over-sample “hard examples” during training [Lin, 2017]
• Defined as examples having error larger than median error of the batch. 
• The training batches are created by sampling with replacement 75% hard and 

25% easy examples from the sampling batch.
• Also used gradient clipping here to increase 

stability

•Problem: “Dying ReLU” – losing too much 
information on the negative gradient cases 
•Solution: Use Leaky ReLU [Glorot, 2011]

Regularization Methods
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Results: Prediction of Proportion of Chemical Outputs 
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Table 2: Quantitative analysis of predictions of species composition, temperature (T),
source term (W) and Heat release (HR) using the regression model in Fig. 2

Range
(OMAX �OMIN )

Standard
Error

Range (EO)
Mean
Error

Training
Accuracy

Validation
Accuracy

H 0.0219 0.0001 0.00431 29.23 21.44
O2 1.0 0.005 0.3419 20.17 12.56
O 0.0665 0.00033 0.00892 55.79 37.43

OH 0.1279 0.00064 0.0345 56.91 43.34
H2 1.0 0.005 0.2606 38.40 25.41

H2O 0.8865 0.0044 0.6056 26.19 14.59
HO2 0.0142 7.1e� 05 0.00137 60.36 41.42
H2O2 0.0091 4.5e� 05 0.00259 55.92 36.05

HR(J/m3) 93.4e+ 81 6.4e+ 78 1.05e+ 76 81.23 81.18
T (K) 3295 34.47 82.44 61.97 54.60

W 30 0.149 3.023 71.55 58.144

54.60% represents the number of data points which are predicted within a range
of 34.47K range of the tabulated data. We see similar accuracy for source term
(W ) with a mean error value of 3.023. The R2 statistic for our model predictions
of T and achieve an average value of 0.94 per flamelet predictions. The model
is able to capture a large part of the combustion manifold and can be used for
evaluation with combustion simulators.

4.2 Ablation study and qualitative analysis

In this section we present an ablation study of our training methodology by
varying or removing components and comparing the quantitative results. We
also support this with qualitative results where we pick a flamelet from the test
data set and analyze the predicted temperature curve generated by our model.
The curve used for the qualitative study in this section is for P = 25bar. As
mentioned, the closest pressure values in the training data are at 20bar and
30bar. Thus the ablation results also provide us an insight into the interpolation
skills of the deep neural network model. The flamelet used for comparison was
selected at random and represents an above average performance case of our
deep neural network model.

Table 3: Quantitative results for regularization of NN on combustion manifold.

No
Regularizer

L1L2
Regularizer

Layer
Normalization

Batch
Normalization

Training Accuracy 87.59 59.01 44.53 61.68
Testing Accuracy 31.44 39.83 23.63 12.28



Results: Ensembles on Varying Pressure
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Results: Ablation Study on Three Regularization Approaches
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Some Results
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No Regularization L1L2 Regularization Layer Normalization Batch Normalization

Accuracy 31.44 39.83 23.63 12.28

Uniform Sampling Over Sampling Ensemble Model

Accuracy 39.83 48.87 47.73

Parallel Inference Time (in ms) Serial Inference Time 
(in s)

Memory Requirements (in 
MB)

Tabulation Method 1.2 x 105 10.997 184.64

Deep Neural Network 13.92 55.27 24.158

Advantage of L1L2

Advantage of Over Sampling Hard Cases

Computational Benefits of Combined Methods over Tabular



Next Steps: Proof of Concept for Simulation Results

Using OpenFOAM simulator a single step of simulation was replace with the 
DNN predicted temperature and then run forward.

DNN:

Tabular:
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•Main takeaway
• Sometimes it’s worth trying an old idea again with new approaches 
• Deep Neural Networks can be use for this kind of complex lookup mapping
• There are a huge number of regularization methods that need to be explored in 

these kind of applied problems, a thorough experimental methodology for 
comparing their effects is essential

•Next Steps
• Potential for increased complexity of combustion simulations with more 

dimensions is massive
• Connect the DNN models directly to a simulator and run entire dynamics 

through to compare results on 3D case
• Demonstrate ability to do more

• Try 5-8 input values with more supervised data

Conclusions
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Domains (where does the 
complexity come from?)
• Forest Fire, Invasive Species Spread

• Catastrophy prediction, strategic 
management, decision aids

• Medical Imaging
• Diffusion MRI, Digital Pathology

• Automotive
• Human Driving Behaviour Learning
• Autonomous Driving
• Surroundings/Object classification 

and understanding
• LIDAR pointcloud analysis

Tasks (what are we trying to do?)
• Decision Making Under Uncertainty
• Anomaly Detection
• Classification
• Prediction

Methods (how do we solve it?)
• Reinforcement Learning
• Deep Learning
• Ensemble Methods
• Data/Dimensionality Reduction 

My Research Vision
To augment human decision making in complex domains 
and environments in a dependable and transparent way.

Domains

Tasks

Methods
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