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• The following table shows the accuracy and the loss for each prediction variable.
• The equation to consider a prediction accurate is:

!𝑇 𝑑 𝜖 {𝑇 𝑑 − 𝐸𝑇, 𝑇 𝑑 + 𝐸𝑇}

ResultsIntroduction
• The computational challenges in turbulent combustion simulations stem from the 

physical complexities and multi-scale nature of the problem which make it intractable 
to compute scale-resolving simulations.

• For most engineering applications, the large scale separation between the flame 
(typically sub-millimeter scale) and the characteristic turbulent flow (typically 
centimeter or meter scale)  allows us to evoke simplifying assumptions--such as done 
for the flamelet model--to pre-compute all the chemical reactions and map them to a 
low-order manifold.

• The resulting manifold is then tabulated and 
looked-up at run-time. As the physical 
complexity of combustion simulations 
increases (including radiation, soot 
formation, pressure variations etc.) the 
dimensionality of the resulting manifold 
grows which impedes an efficient tabulation 
and look-up.

• A simplified illustration of the flamelet
model for non-premixed combustion is 
shown in Figure on the right. 

• In this work we present a novel approach to train deep neural networks to model the 
high-dimensional combustion manifold.

• We approximate the combustion manifold using a neural network function 
approximator and use it to predict the temperature and composition of the reaction.

• We present a novel training procedure which is developed to generate a smooth 
prediction curves for temperature over the course of a reaction.

• We then evaluate our work against the current approach of tabulation with linear 
interpolation in combustion simulations.

• We also provide an ablation study of our training procedure in the context of 
overfitting in our model.

• Four different neural networks are 
designed for predicting the 
Species, Heat Release, 
Temperature and Source Term.

• Temperature (T) and Source Term 
(W) are modelled using a separate 
neural network because of the large 
scale difference in their output 
range.

Over Sampling Hard Examples
• Hard examples are sample points where our model error exceeds 75th percentile error mark between all 

training data points.
• To improve accuracy on hard-examples, we perform over-sampling of hard data-points.
• The training batch consists of 50% hard data-points and 50% easy data-points.

Importance Weights Error and Gradient Clipping

• We incorporate the weighting of the loss function differently for hard and easy examples as it leads to 
better model predictions. We use the following loss for hard examples:

𝐿𝑖𝑚𝑝 𝑑 𝑑~𝐷 = 𝛼 ∗ 𝑀𝑆𝐸(𝑇 𝑑 , !𝑇 𝑑 )
• We also incorporate gradient clipping to clip large gradients in the backpropagation phase of neural 

network training to reduce any damage to our trained model caused by anomalies in our data.

Regularization

• To reduce the chance of oscillation and over-fitting, we combine L1 and L2 regularizers with an L1L2
regularized loss function.

𝐿 𝑑 𝑏𝑎𝑡𝑐ℎ = 𝑀𝑆𝐸 𝑑 𝑏𝑎𝑡𝑐ℎ + 𝜆𝑙1𝛴 𝑊𝑁𝑁| + 𝜆𝑙2𝛴| 𝑊𝑁𝑁
E

• We arrive at values of 𝜆𝑙1 = 0.00015 and 𝜆𝑙2 = 0.000125. through cross validation of the temperature curve 
smoothness.

• Additional experiments were performed with the current state of the art regularization techniques, e.g, 
Batch Normalization, Layer Noramalization and Dropout.

Ensemble Model

• An ensemble model helps reduce the overfitting in the final predictions and improve accuracy by 
cherry picking the individual models.

• Ensemble model helps reduce the regularization performed to each individual neural network while 
reducing overfitting.

• We create an averaging ensemble of 5 trained deep neural networks. The output of only 4 models is 
used to generate the prediction. The 4 models are chosen based on least variance criteria.

• Individual neural networks are trained using different initializations, learning rates and initial seed 
values.

H O2 O OH H2 H2O HO2 H2O2 HR T(K) W

Acc 21.44 12.56 37.43 43.34 25.41 14.59 41.42 36.05 81.18 54.60 58.14

• The following figures show an ablation comparison of each approach discussed in the 
Methods section.

• L1L2 regularizer reduces over-fitting in the trained model.
• Using an ensemble model helps reduce the error in the trained model.
• The over-sampling of hard examples during training reduces the model’s error on areas 

with large variation.

• The following table show the accuracy gain when using L1L2 regularization.
• The table includes comparisons with popular techniques like Layer normalization and 

Batch normalization.
No Regularization L1L2 Regularization Layer Normalization Batch Normalization

Acc 31.44 39.83 23.63 12.28

Uniform Sampling Over Sampling Ensemble Model

Acc 39.83 48.87 47.73

• The following table show the accuracy comparison when we replace uniform sampling 
during training with over sampling.

• The use of ensemble model does not improve the model accuracy but provides 
smoother temperature prediction curves which are needed for the combustion simulator.

• The figure on the right shows a 
qualitative comparison of our 
model’s predictive power when 
interpolating to testing data.

• The training data included 
curves at P=30,35,40 and 50Pa. 
As we see in the figures, our 
model interpolates well for 5Pa 
pressure difference.

• The following table presents the memory and the running time analysis of our approach 
when compared to the current tabular approach used in combustion community.

Parallel Inference 
Time (in ms)

Serial Inference Time 
(in s)

Memory 
Requirements (in MB)

Tabulation Method 1.2 x 105 10.997 184.64
Deep Neural Network 13.92 55.27 24.158

• Proposed a novel training procedure for modelling high dimensional combustion 
manifolds using deep neural networks.

• Proposed a novel loss function for regression tasks with examples of varying degree of 
hardness.

• We also propose a fast over sampling methodology based on the loss of each data point. 
• Presented a trained model which achieves sufficient accuracy when compared with 

tabulated data and runs fast enough to integrate into high dimensional multi-physics 
simulators of combustion.

• Our model allows for cheap computation of very complex physics, compared to the 
traditional tabulation methods which can not scale to high dimensions.

• We plan to extend this work to focus on dimensionality reduction to understand core 
aspects of the combustion manifold.


