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Abstract. Deep Learning and back-propagation have been success-
fully used to perform centralized training with communication pro-
tocols among multiple agents in a cooperative environment. In this
work, we present techniques for centralized training of Multi-Agent Deep
Reinforcement Learning (MARL) using the model-free Deep Q-Network
(DQN) as the baseline model and communication between agents. We
present two novel, scalable and centralized MARL training techniques
(MA-MeSN, MA-BoN), which achieve faster convergence and higher
cumulative reward in complex domains like autonomous driving simu-
lators. Subsequently, we present a memory module to achieve a decen-
tralized cooperative policy for execution and thus addressing the chal-
lenges of noise and communication bottlenecks in real-time communica-
tion channels. This work theoretically and empirically compares our cen-
tralized and decentralized training algorithms to current research in the
field of MARL. We also present and release a new OpenAI-Gym environ-
ment which can be used for multi-agent research as it simulates multiple
autonomous cars driving on a highway. We compare the performance of
our centralized algorithms to existing state-of-the-art algorithms, DIAL
and IMS based on cumulative reward achieved per episode. MA-MeSN
and MA-BoN achieve a cumulative reward of at-least 263% of the reward
achieved by the DIAL and IMS. We also present an ablation study of
the scalability of MA-BoN showing that it has a linear time and space
complexity compared to quadratic for DIAL in the number of agents.

Keywords: Multi-agent reinforcement learning · Autonomous
driving · Emergent communication

1 Introduction

Multi Agent Reinforcement Learning (MARL) is the problem of learning
optimal policies for multiple interacting agents using RL. Current autonomous
driving research focuses on modeling the road environment consisting of only
human drivers. However, with more autonomous vehicles on the road, a shared
cooperative policy among multiple cars is a necessary scenario to prepare for.

To overcome the problem of non-stationarity in the training of MARL agents,
the current literature proposes the use of centralized training using message shar-
ing between the agents [11]. The message shared between the agents is generated
using the policy network and trained using policy gradients. This approach leads
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to sub-optimal messages being shared between agents as the message is inadver-
tently tied to the policy of the agent [3]. Current approaches thus show a poor
performance in large-scale environments with sparse rewards and a long time to
horizon as shown in our experiments section.

In this paper, we propose centralized training (MA-MeSN) algorithms for
MARL environments which are a generalization of the MARL algorithms cur-
rently in literature. Our approach allows separation of policy and communication
models and provides a stabilized method for training in an off-policy method.
We also compare our centralized training algorithm against DIAL (Differentiable
Inter-Agent Learning) [5] and IMS (Iterative Message Sharing) [14] on a large
scale multi-agent highway driving simulator we developed as part of this work.
We present techniques (MA-MeSN-MM) to derive a cooperative decentralized
policy from the trained centralized policy (MA-MeSN). All algorithms are com-
pared based on various metrics our treadmill driving simulator and OpenAI’s
multi-agent particle environments [13] for formal verification of our algorithms.

2 Related Work

MARL has a rich literature (particularly in the robotics domain [2]). Independent
cooperative tabular Q-learning with multiple agents has been studied in [15]. The
empirical evaluation shows that cooperative behavior policy can only be achieved
by information sharing, for example, other agents’ private observations, policies
or episode information.

There is a vast literature on the emergence of communication between agents
in the same environment [4,9,13,14]; which propose training messages shared
between agents using backpropagation. The work in [5,14] extends the tech-
niques of message sharing between agents to multi-agent reinforcement learn-
ing (MARL). The authors in [14] employ a message sharing protocol where an
aggregated message is generated, by averaging the messages from all agents, and
passing it back as an input to the agents along with their observation’s hidden
state representation to compute the final state-action values. This Iterative Mes-
sage Sharing (IMS) is iterated P times before the final action for all agents is
computed using ε-greedy method. Differentiable Inter-Agent Learning DIAL [5]
also trains communication channels, through back-propagation, for sequential
multi-agent environments. DIAL presents an on-policy training algorithm which
uses the past history to generate messages for inter-agent communication. In this
paper, we present a generalization of the MARL algorithms currently available
in literature for centralized training. Our algorithm is able to outperform DIAL
and IMS on large scale environments while achieving a better time and space
complexity during training and execution.

Multi agent environments require a decentralized execution of policy by
agents in the environment. Work in [7] has shown that the MARL agents could be
executed with discrete communication channels by using a softmax operation on
the message. This approach provides a partial decentralization of the trained cen-
tralized policy. The authors in [6] successfully train multiple independent agents
by stabalizing the experience replay for multi-agent setting. The stabilization
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is done by prioritizing newer experiences in the experience buffer for training
as they represent the current transition dynamics of the environment. We also
compare the training of our decentralized policy against the independent agents
trained using Stabilized Experience Replay (SER). Our algorithm allows the
centralized trained cooperative policy to be easily extended to a decentralized
setting while maintaining acceptable performance.

3 Background on Multi-Agent Reinforcement Learning

In this section we present a background on multi-agent reinforcement learning
and the variables used in the paper. A short background on Deep Q-Networks
[12] can be found in Appendix (https://uwaterloo.ca/scholar/sites/ca.scholar/
files/mcrowley/files/deep multi agent reinforcement learning for autonomous
driving-full.pdf). In this work we consider a general sum multi-agent stochastic
game G which is modeled by the tuple G = (X,S,A, T,R,Z,O) with N agents,
x ∈ X, in the game. The game environment presents states s ∈ S, and the agents
observe an observation z ∈ Z. The observation is generated using the function
Z ≡ O(s, x) which maps the state of each agent to its private observation z. The
game environment is modeled by the joint transition function T (s,ai, s′) where
ai represents the vector of actions for all agents x ∈ X. The dependence of the
transition matrix on behavior policy of other agents gives it the non-stationary
property in multi-agent environments. We use the subscript notation i to repre-
sent the properties of a single agent x, a bold subscript i to represent properties
of all agents x ∈ X and −i to represent the properties of all agents other than xi.
We use the superscript t to represent the discrete time-step. All agents share the
same utility function R, which provides agents with an instantaneous reward
for an action ai. Our game environment represents a Decentralized Partially
Observable Markov Decision Process (DEC-POMDP) [1]. The agents can send
and receive discrete messages between each other, which are modeled based on
speech act theory, represented as mt

i. The game environment does not provide
a utility function in response to the communication/message actions performed
by an agent. The major challenges in the domain of multi-agent reinforcement
learning include the problem of dimensionality, coordinated training, and train-
ing ambiguity. Having strong communication between agents can solve some of
these problems.

4 Methods

4.1 Multi-Agent Message Sharing Network (MA-MeSN)

The DIAL and IMS methods demonstrated that emergent communication
between multiple agents can be achieved by optimizing messages shared between
agents using backpropagation. DIAL presents a model where the communicative
actions (generated by the message policy) and non-communicative actions (gen-
erated by the behavior policy) are generated using the same model. This app-
roach forces a strong correlation between the communicative and non commu-
nicative actions, but leads to sub-par results. Behavior policy of the agents might

https://uwaterloo.ca/scholar/sites/ca.scholar/files/mcrowley/files/deep_multi_agent_reinforcement_learning_for_autonomous_driving-full.pdf
https://uwaterloo.ca/scholar/sites/ca.scholar/files/mcrowley/files/deep_multi_agent_reinforcement_learning_for_autonomous_driving-full.pdf
https://uwaterloo.ca/scholar/sites/ca.scholar/files/mcrowley/files/deep_multi_agent_reinforcement_learning_for_autonomous_driving-full.pdf
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be similar in a cooperative environment, but their message policy is focused on
achieving high information sharing between agents. Using the same model to
predict the behavior and message policy would lead to conflicting updates to
the neural network due to different objectives.
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Fig. 1. Architecture for Multi-Agent Message Sharing Network (MA-MeSN)

We thus present a generalization of the communication based MARL algo-
rithms in Fig. 1 where each agent uses a different model for message policy and
behavior policy. The f ′′ neural network maps the message received from the
other agents m−i along with its partial observation of the environment zi to a
state-action-message value function f ′′ = Q(zi, ai,mi). We refer to this network
as the (behavior) policy network. The message is generated by the other agents
x−i using the neural network approximator f ′

i which maps the agent’s private
observation to a communication action m−i. We refer to this network as the
message (policy) network. The message passing interaction/negotiation can be
extended to multiple iterations for faster convergence. During the training, we
allow only allow a single pass of messages between agents. In contrast to previous
work in DIAL, we train the message network using the cumulative gradients of
all policy networks as shown in Algorithm 1. Optimizing the message network
with cumulative gradients leads to messages which are generalizable to all agent
policies.

Comparison to Previous Work. This approach has two advantages over
DIAL. The messages mt

−i(z
t
−i, f(zt

i)) are conditioned on the entire observable
state at time t, as opposed to DIAL, where messages mt

−i(z
t−1
−i ) are a function

of the previous time-step observation of each agent zt−1
−i . Generating a message

based on the past introduces the message network’s dependency on the transition
dynamics; which as discussed exhibits a non-stationary property in multi-agent
environments and thus lead to divergence. On the other hand, in MA-MeSN,
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Algorithm 1. Multi-Agent Message Sharing Network (MA-MeSN)
for i = 1, N do

Initialize replay memory D〉;wherei ∈ {1..N} to capacity M
Initialize the online and target, message and policy networks f ′

i,θ, f
′′
i,θ, f

′
i,θ′ , f ′′

i,θ′
end for
for episode = 1, E do

for t = 1, Tconvergence do
for i = 1, N do

Select a random action at
i with probability ε

Otherwise, select at
i = argmaxaQf ′′

i
(ot

i, m
t
−i, a; f

′′
θ )

Execute action at
i, collect reward rt+1

i and observe next state ot+1
i

Store the transition (ot
i, a

t
i, r

t+1
i , ot+1

i ) in D〉
Sample mini-batch of transitions (oj

i , a
j
i , r

j+1
i , oj+1

i ) from D〉
Generate the messages from other agents mj

−i = f ′
−i(o

j
−i)

Set yj
i =

{
rj+1

i , if oj+1
i is terminal

rj+1
i + γ maxa′ Qf ′′

i
(oj+1

i , mj+1
−i , a′; f ′′

i,θ′), otherwise

Compute gradients using target value yj
i for policy network f ′′

θ

ΔQf ′′
i
= yj

i − Qf ′′
i
(oj

i , m−i, a; f
′′
i,θ

Apply gradients ∇θi,f ′′ to f ′′
i,θ

Collect gradients ∇θi,f ′ from all policy networks
Apply gradients ∇θi,f ′ to f ′

i

end for
Every C steps, set θ′

i,f ′′ ← θi,f ′′∀i
Every C steps, set θ′

i,f ′ ← θi,f ′∀i
end for

end for

training the message network to generate messages mt
−i based on the current

observation reduces the dependence on the environment’s transition dynamics.
Secondly, this allows for our algorithm to train off-policy using a step based
experience replay. Whereas DIAL requires on-policy training using recorded tra-
jectories.

Fully Decentralized Cooperative Policy. The messages shared between
agents are discrete of size 2 bytes. We generate discrete message by apply-
ing Gumbel-Softmax Sampling [7] on the prediction of the message network.
To achieve fully decentralized execution without message sharing, we utilize a
LSTM memory module μ in conjunction with each agent’s policy network. The
LSTMμ learns a mapping from agent’s private observation history to the mes-
sage generated by the other agents in the environment. The model LSTMμ

mimics the message received from other agents. Thus the individual memory
modules μ along with their policy network f ′′ can be independently used for fully
decentralized execution of the learned cooperative policy (MA-MeSN-MM). The
message memory module LSTMμ is trained in a supervised fashion in parallel
to the policy and message networks during centralized training.
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4.2 Multi-Agent Broadcast Network (MA-BoN)

The generalization of communication based centralized MARL algorithms pre-
sented in the previous section allows us to develop communication models with
distinct message types. We constraint our MA-MeSN model to a single message
to rule them all approach and develop a broadcast model as shown in Fig. 2.
The neural network f ′ (message network) maps the shared partial observation
encoding from all agents to a broadcast message bmt. We study the properties
of MA-MeSN and MA-BoN in Sect. 6.3 and show that this network is feasible in
multi-agent general sum games.
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Fig. 2. Multi-Agent Broadcast Network (MA-BoN)

The NN f ′ learns a combined communication message as the broadcast mes-
sage (bmt). Each agent can now independently evaluate the action-value for
their private observation using the function g′(zt

i , bm
t), which is a function of

the complete observed state of the environment. This network also allows for
parallel action-value evaluations with a single forward pass of the network and
avoids the |P | iterations required by IMS, and provides a linear space and run-
time complexity as shown in Sect. 6.2. MA-BoN can also be decentralized by
the use of a memory module LSTMπ trained parallel to the policy network
(MA-BoN-MM).

5 Experimental Methodology

In this paper, we compare our algorithms with MARL algorithms in the literature
on three different MARL environments. We present the treadmill driving envi-
ronment simulator in this section. The OpenAI particle environments are used to
show the validity of our algorithms on public testbeds. The results can be found
in Appendix (https://uwaterloo.ca/scholar/sites/ca.scholar/files/mcrowley/files/
deep multi agent reinforcement learning for autonomous driving-full.pdf).

https://uwaterloo.ca/scholar/sites/ca.scholar/files/mcrowley/files/deep_multi_agent_reinforcement_learning_for_autonomous_driving-full.pdf
https://uwaterloo.ca/scholar/sites/ca.scholar/files/mcrowley/files/deep_multi_agent_reinforcement_learning_for_autonomous_driving-full.pdf
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5.1 Treadmill Driving Environment

The treadmill environment simulates an infinite highway with multiple cars driv-
ing in the presence of an adversary. The highway is simulated using a treadmill,
which is always running and thus creates an infinite highway. The size of the
treadmill is currently kept fixed at [100, 100] steps. Agents can enter or exit
the treadmill from the front and back. The treadmill contains a minimum of 2
cooperative autonomous agents and at least 1 adversary agent. These agents can
be controlled using Deep RL methods and the adversary (aggressive) car is con-
trolled with a stochastic behavior policy which can cause a crash with the closest
autonomous car. The cooperative autonomous vehicles can sense the closest car
as part of its partial private observation of the environment, but do not receive
information to distinguish between their behavior (cooperative/adversary). The
agents can send messages to other agents using a discrete communication broad-
cast channel, to which other agents subscribe. The private reward received by
an autonomous car is the normalized distance from the closest observed car
and a large negative reward for a crash. The agents’ actions include 3 angles of
steering in 8 directions and 3 discrete levels of acceleration/deceleration. The
reward function does not provide explicit rewards for cooperation between the
agents or for maintaining stable emergent communications between agents. The
episode is terminated when the distance between any two agents is 0 (collision
is encountered).

6 Results and Discussions

In this section, we present the results of training our algorithms in the treadmill
driving environment. In all our algorithms (MA-MeSN, MA-BoN, DIAL, IMS,
independent DQN, independent DQN with SER), we use a hierarchical neural
network structure [8]. We provide an evaluation of hierarchical DQN on tread-
mill driving environment domain in Appendix (https://uwaterloo.ca/scholar/
sites/ca.scholar/files/mcrowley/files/deep multi agent reinforcement learning
for autonomous driving-full.pdf). In this section, we focus on presenting perfor-
mance results for our multi-agent algorithms on the treadmill driving simulator.

6.1 Centralized Training on Multi-Agent Driving Environment

All experiments are run for a minimum of 4K episodes (0.8M steps). All neural
networks consist of two layers with 4096 neural units in the first layer with 12
neurons in the second layer. DIAL network consists of two layers with 6144 units
in the first layer to allow for fair evaluation to other algorithms. The maximum
size of message shared between agents is 2 bytes. We use Adam optimizer with a
learning rate of 5×10−4. The batch-size for updates is 64 and the target network
is updated after 200 steps, except DIAL’s target network is updated after 40
episodes. For the IMS algorithm, we arrived at using P = 5 for communication
iterations through cross-validation.

https://uwaterloo.ca/scholar/sites/ca.scholar/files/mcrowley/files/deep_multi_agent_reinforcement_learning_for_autonomous_driving-full.pdf
https://uwaterloo.ca/scholar/sites/ca.scholar/files/mcrowley/files/deep_multi_agent_reinforcement_learning_for_autonomous_driving-full.pdf
https://uwaterloo.ca/scholar/sites/ca.scholar/files/mcrowley/files/deep_multi_agent_reinforcement_learning_for_autonomous_driving-full.pdf
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Fig. 3. Comparison of Cumulative Reward for Centralized Training Algorithms in
Multi-Agent Driving Environment.

The cumulative reward achieved during centralized training of our MARL
algorithms is shown in Fig. 3. All experiments are repeated 20 times and averaged
to produce the learning curves. We achieve the highest cumulative reward with
MA-MeSN followed by the MA-BoN algorithm. The IMS and DIAL algorithms
are able to improve on the policy achieved by independent DQN, as they have
the advantage of message sharing over independent DQN policy. IMS shows a
slow learning curve compared to other algorithms with P = 5 communication
iterations. IMS training also requires curriculum learning approach to train the
network efficiently [14]. However, to maintain fairness, this was left out in our
experiments. DIAL shows steady improvement in performance, however, the
performance of the final policy is weak when compared to MA-MeSN.

As results show, our generalized MARL algorithm (MA-MeSN) is able to
perform superior to DIAL and IMS. The benefit of having a separate model
for message policy and behavior policy prediction. The separation of message
policy model and behavior policy model leads to each neural network achieving
a more optimal solution than competing approaches. Whereas, DIAL and IMS
constraint the training of message and behavior policy to a single neural network
which produces sub-optimal results. MA-BoN also constraints the inter-agent
message sharing to a single broadcast message which also leads to a sub-par
result in comparison to MA-MeSN.

6.2 Ablation Study of Scalability of MA-BoN

In this section, we demonstrate the scalability of the MA-BoN approach com-
pared to DQN with stabilized experience replay, IMS and DIAL. We carry out
an ablation study of our approach by varying the number of cars in the envi-
ronment and present the results in Fig. 4. The Fig. 4 shows a comparison of the
inference time it took to complete an episode and the average cumulative reward
achieved per episode when the number of agents in the environment is increased.
The results for cumulative reward comparison are computed by averaging results
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Avg. cumulative reward achieved at
convergence with varying number of
agents in the environment.

Avg. inference time of the algorithms
with varying number of agents in the
environment.

Fig. 4. Scalability comparison on the treadmill environment.

of 5 training runs for each algorithm with different seed values. The training of
all algorithms was completed over 15, 000 episodes or 2.5M steps. We see that
our approach MA-BoN is able to sustain better performance compared to other
approaches when the complexity of the environment was increased. The infer-
ence time grows linearly for MA-BoN in comparison to the quadratic increase
for DIAL. MA-BoN shows better scalability as the message generation network
for each agent is optimized separately using the cumulative gradients from all
agent’s temporal difference loss. Thus the message is more generalizable in com-
plex settings, while DIAL and IMS suffer from the problem of optimizing the
joint objective for communicative and non-communicative policy; which leads to
reduced robustness of the messages shared between agents.

6.3 Theoretical Study of Emergent Communication

In this section, we study the inter-agent emergent communication achieved dur-
ing training of our MARL algorithm, MA-MeSN. Table 1 shows the results for
MA-MeSN using common metrics [10] to measure the effect of these messages
using our domain. Speaker consistency (SC) is used to measure positive sig-
naling as it measures the mutual information between the communicative mi

and behavior ai policy of an agent. We see a small positive value of 0.18 for
SC; which suggests that the objective for message policy and behavior policy
are indeed different. Thus our approach of generalizing MARL algorithms with
separate message and policy networks is necessary. Instantaneous Coordination
(IC) measures the positive listening between agents, which is measure of the
mutual information between the speaker’s communicative actions m−i and the
listener’s behavior/locomotive actions ai. We achieve a value of 0.41 for IC which
indicates that the listener agent’s policy are dependent on the messages of the
speaker agent, which is necessary for emergent communication. We also study
the Communication Message Entropy which measures if the listener receives the
same message for a given input. We achieve a value of 1.27 for entropy, which
shows that the speaker is not using different messages for the same input and
is rather consistent in its signals.
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Table 1. Study of Emergent Communication in MA-MeSN. The table shows the results
for speaker consistency, instantaneous coordination and entropy [10].

Emergent communication metric used Value

Speaker consistency (Positive signaling) 0.18

Instantaneous coordination (Positive Listening) 0.41

Communication message entropy 1.27

Message Input Norm (MIN) 63.75

Cumulative reward with white noise 319.07

To further study the effects of communication, we probe our MA-MeSN
model, calculate the L2-norm of the fully connected weight matrix for message
input for the listener agent, and report the results in Table 1. The weight matrix
for the message input has an L2-norm much higher than 0.0, which suggests
that the message indeed does get used by the listener agent’s policy network.
We extend our analysis of the MA-MeSN by replacing the messages received by
the agents with white noise on a trained MA-MeSN model. We see a reduction in
the mean cumulative reward achieved by the algorithm from 746.8 to 319.07 in
the stochastic environment. The reduction in the cumulative reward shows that
emergent communication did develop between agents and is an integral part of
the final cooperative policy achieved.

6.4 Fully Decentralized Cooperative Policy in Driving Environment

We compare our method of using message memory models for decentralized
execution (MA-MeSN-MM) with independent DQN, DQN with stabilized expe-
rience replay and distributed behavior cloning of centralized cooperative policy

Fig. 5. Comparison of cumulative reward for decentralized training in Multi-Agent
Driving Environment.
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(CoDBC). CoDBC policy is trained using imitation learning of the (expert) cen-
tralized cooperative policy from MA-MeSN. All of the hyper-parameters and
experimental setup are exactly the same as the experiments for the centralized
training section. The learning curve for decentralized policies is shown in Fig. 5.
As the treadmill environment does not explicitly reward agents for cooperation,
we see poor performance from DQN and DQN with SER; however DQN with
SER is more stable during training compared to DQN. DQN with SER applies
a weight to each training sample’s gradient. The weight is computed using a
linearly decaying function based on the episodes elapsed since a sample was
collected. Thus, DQN with SER is able to prioritize its training on the latest
samples (which represent the latest policies of other agents) collected in the
DQN’s buffer and thus avoids divergence. However, the final policy achieved by
DQN w/ SER is worse than MA-MeSN-MM and CoDBC.

While the CoDBC method outperforms DQN and DQN w/ SER, the num-
ber of episodes required to learn a cooperative policy is nearly 8000 episodes, as
CoDBC needs to be run sequentially after MA-MeSN policy training has con-
verged. Our method MA-MeSN-MM achieves decentralized cooperative policy by
learning a function mapping from private observations to the messages received
from other agents. The message module (MM) is trained in parallel to the pol-
icy network and thus does not require additional training after MA-MeSN has
converged. This approach is ideal for real-time agents in MARL environments
with a goal of cooperation as communication channels are unreliable and induce
a time-latency.

7 Conclusion and Future Work

In this paper we present that generalization of the current work in MARL field
leads to large improvements in the final multi-agent policy. Our approach allows
for variability in the message format which is useful for various domains. MA-
MeSN and MA-BoN both outperform the algorithms found in current literature
based on learning curve results. Our algorithms also provide improvements in
the time and space complexity over DIAL and IMS. MA-MeSN and MA-BoN are
easier to train as they can be trained in an off-policy setting. We also present a
decentralized model which achieves higher cumulative reward compared to some
of the centralized techniques and all decentralized techniques. This paper also
presents a new large scale multi-agent testing environment for further MARL
research.
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