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multi - agent collaborative DQN with PER algorithm . A first 
level includes a data processing module that provides sensor 
data , object location data , and state information of the host 
vehicle and other vehicles . A second level includes a coor 
dinate location module that , based on the sensor data , the 
object location data , the state information , and a refined 
policy provided by the third level , generates an updated 
policy and a set of future coordinate locations implemented 
via the first level . A third level includes evaluation and target 
neural networks and a processor that executes instructions of 
the RLP algorithm for collaborative action planning between 
the host and other cles based on outputs of the evalu 
ation and target networks and to generate the refined policy 
based on reward values associated with events . 
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MULTI - LEVEL COLLABORATIVE state information , and a refined policy provided by the third 
CONTROL SYSTEM WITH DUAL NEURAL level , generate an updated policy and a first set of future 
NETWORK PLANNING FOR AUTONOMOUS coordinate locations to be implemented via the first level . 

VEHICLE CONTROL IN A NOISY The third level includes an evaluation network , a target 
ENVIRONMENT 5 network , and a processor configured to execute instructions 

of the RLP algorithm ( i ) for collaborative action planning 
FIELD between the host vehicle and the other vehicles based on 

outputs of the evaluation network and the target network , 
The present disclosure relates to autonomous and artificial and ( ii ) to generate the refined policy based on reward values intelligence vehicle systems and corresponding multi - agent 10 associated with multiple events . The evaluation network and 

collaborative control systems . the target network are neural networks . 
In other features , a method of operating a host vehicle is BACKGROUND provided . The method includes : storing a reinforcement 

The background description provided here is for the is learning and planning ( RLP ) algorithm , which is a multi 15 
purpose of generally presenting the context of the disclo agent collaborative deep Q network ( DQN ) with prioritized 
sure . Work of the presently named inventors , to the extent it experience replay ( PER ) algorithm . The method further 
is described in this background section , as well as aspects of includes : providing at a first level sensor data , object loca 
the description that may not otherwise qualify as prior art at tion data , and state information of multiple vehicles includ 
the time of filing , are neither expressly nor impliedly admit- 20 ing the host vehicle and multiple other vehicles ; at a second 
ted as prior art against the present disclosure . level and based on the sensor data , the object location data , 
Autonomous vehicles can include multiple control mod- the state information , and a refined policy provided by a 

ules , such as an engine control module , a transmission third level , generating an updated policy and a first set of 
control module , an infotainment control module , a naviga- future coordinate locations to be implemented via the first 
tion control module , etc. The control modules and / or other 25 level ; and at a third level , executing instructions of the RLP 
electronic devices can communicate with each other over a algorithm via a processor ( i ) for collaborative action plan 
controller area network ( CAN ) bus . This may include trans- ning between the host vehicle and the other vehicles based 
mission of CAN messages indicative of states of various on outputs of an evaluation network and a target network , 
parameters . A vehicle typically includes various sensors for and ( ii ) to generate the refined policy based on reward values 
detection of states of devices in the vehicle and conditions 30 associated with multiple events . The third level includes the 
surrounding the vehicle . The sensors may include , for evaluation network and the target network . The evaluation example , a steering wheel position sensor , a brake pedal network and the target network are neural networks . position sensor , an accelerator position sensor , temperature Further areas of applicability of the present disclosure will sensors , a vehicle speed sensor , an engine speed sensor , become apparent from the detailed description , the claims cameras , radar sensors , lidar sensors , etc. Information from 35 
the sensors and other vehicle information may be shared and the drawings . The detailed description and specific 
with the control modules via CAN messages transmitted examples are intended for purposes of illustration only and 
over the CAN bus . The vehicle information may also be are not intended to limit the scope of the disclosure . 
shared among different vehicles in close proximity with each BRIEF DESCRIPTION OF THE DRAWINGS other using vehicle - to - vehicle communication . 
An autonomous vehicle may be equipped with a driver 

assistance module to assist the driver in operating the The present disclosure will become more fully understood 
vehicle . The driver assistance module may monitor host from the detailed description and the accompanying draw 
vehicle information and other vehicle information via , for ings , wherein : 
example , CAN messages and determine parameters of the 45 FIG . 1 is a functional block diagram of an example of a 
host vehicle and other vehicles and environmental condi- driver assistance system incorporating a reinforcement 
tions . Based on this information , the driver assistance mod- learning and planning ( RLP ) module in accordance with an 
ule may assist the driver by generating , for example , warn- embodiment of the present disclosure ; 
ing signals and / or performing operations to brake , steer FIG . 2 is a functional block diagram of an example of a 
and / or control acceleration and speed of the vehicle . This 50 reinforcement learning system implemented in a cloud 
may include , for example , maintaining the host vehicle in a based network and applied to multiple agents in accordance 
traffic lane and / or merging the vehicle into an adjacent traffic with an embodiment of the present disclosure ; 
lane to avoid a collision . FIG . 3 is a functional block diagram of an example of an 

autonomous vehicle system incorporating a RLP system SUMMARY architecture in accordance with an embodiment of the pres 
ent disclosure ; A reinforcement learning and planning ( RLP ) system for FIG . 4 is a functional block diagram of an example of a a host vehicle is provided . The RLP system includes a 

memory and first , second and third levels . The host vehicle incorporating a driver assistance system includ is memory 
configured to store a RLP algorithm , which is a multi - agent 60 ing a data processing module , a RLP module , a path module 
collaborative deep Q network ( DQN ) with prioritized expe and a driver assistance module operating in accordance with 
rience replay ( PER ) algorithm . The first level includes a data an embodiment of the present disclosure ; 
processing module configured to provide sensor data , object FIG . 5 is a functional block diagram of an example of a 
location data , and state information of multiple vehicles multi - level RLP system incorporating dual neural networks 
including the host vehicle and multiple other vehicles . The 65 in accordance with an embodiment of the present disclosure ; 
second level includes a coordinate location module config- FIG . 6 is a grid representation of a driving domain in 
ured to , based on the sensor data , the object location data , the accordance with an embodiment of the present disclosure ; 

40 

55 
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FIG . 7 illustrates a method of operating the driver assis- association with different environment states and performed 
tance system of FIG . 4 and the multi - level RLP system of actions . Collaborative systems are disclosed in which the 
FIG . 5 in accordance with an embodiment of the present agents share data about the environment and decision mak 
disclosure ; and ing information and based on this information decide on a 
FIG . 8 is a data flow diagram illustrating determination of 5 best course of action to take next . This includes avoiding 

Q and loss values associated with the dual neural networks obstacles , pedestrians and rogue vehicles , which may be 
of the multi - level RLP system of FIG . 5 in accordance with un - instrumented and / or non - autonomous vehicles . This aids 
an embodiment of the present disclosure . in preventing a collision . The collaborative systems include 

In the drawings , reference numbers may be reused to teaching agents to drive autonomously and collaboratively 
identify similar and / or identical elements . 10 in certain scenarios , such as highway scenarios . 

The disclosed agents perform collaborative decision mak 
DETAILED DESCRIPTION ing and path planning using trained and continuous learning 

artificial intelligence ( Al ) systems to prevent single and 
Recent intelligent vehicles include various sensors and series collisions . A single collision refers to a collision 

communication devices , which are used to understand host 15 between two vehicles . A series collision refers to a multiple 
vehicle behavior , driver behavior , and behavior of other consecutive collisions between more than two vehicles , 
vehicles . Driver assistance is provided based on outputs of sometimes referred to as a “ traffic pile up ” . Certain traffic 
the sensors , current operating conditions , and a detected conditions may be mixed such that the traffic includes 
operating environment . For example , a steering wheel angle , autonomous vehicles , partially autonomous vehicles , and / or 
a brake pedal position , and an accelerator pedal position may 20 non - autonomous ( manually driven ) vehicles . Other traffic 
be monitored to determine driver behavior while external conditions may include only fully autonomous vehicles that 
radar sensor signals and camera images may be monitored to are fully connected ( i.e. able to communicate with each 
detect a current vehicle environment , which may include other and share information ) . 
other vehicles . As an example , location and movement of In the disclosed examples , a RLP algorithm ( also referred 
lane markers , surrounding objects , signal lights , etc. may be 25 to as a multi - agent collaborative deep Q network ( DQN ) 
monitored . Driver assistance may be provided to , for with prioritized experience replay ( PER ) algorithm ) is dis 
example , autonomously steer , brake and / or decelerate the closed that provides intelligence for behavior prediction of 
corresponding host vehicle to prevent a collision . surrounding vehicles and negotiated path prediction and 
A modular artificial intelligence ( Al ) system of a vehicle planning for collision avoidance in automated vehicles . The 

may perform autonomous actions and operate a vehicle to , 30 RLP algorithm is used to facilitate autonomous vehicle 
for example , merge from a first lane of traffic into a second learning and predicting of vehicle behaviors and potential 
lane of traffic . A modular Al system is an Al system that is driving paths of the vehicles in a particular environment ( or 
applicable to various vehicle environments and follows a set local traffic scenario ) . The prediction of vehicle behaviors 
of rules to predict movement ( e.g. , travel path , speed , and driving paths may be for any number of vehicles in a 
acceleration , etc. of nearby vehicles relative to a host 35 driving scenario . 
vehicle ) . The disclosed implementations also include a reinforce 

Autonomous driving in past years is a leading focus point ment learning ( RL ) architecture for collaborative , multi 
in the automotive research field and driving in urban and agent planning which is useful for control of spatially 
highway traffic is complex . Given the statistics indicating distributed agents in a noisy environment . Collaborative 
that the number of fatalities in traffic accidents in the last 10 40 driving is needed for future autonomous driving where 
years is 1.2 million per year , autonomous driving is expected several autonomous vehicles are in proximity of each other 
to save millions of lives in the future . Apart from orthodox and are sharing state information , action information , deci 
techniques and in order to provide a vehicle with some sion information , etc. with each other for informed decision 
self - built intelligence , several machine learning ( ML ) tech- making in real time . Complete state information and 
niques have been introduced , which allow a driving agent to 45 intended actions of all of the autonomous vehicles in an 
learn from gathered data and improve future operations environment and position information of non - autonomous 
based on determined experiences . A “ driving agent ” or vehicles may be shared with each autonomous vehicle . In 
" agent ” as used herein may refer to a vehicle , a vehicle this scenario , the autonomous vehicles are capable of driv 
control module , a driver assistance module , a RLP module , ing collaboratively with each other while evading the non 
a simulation system control module , a simulated vehicle 50 autonomous vehicles . These maneuvers may be aggressive . 
control module , or other autonomous vehicle module . An The autonomous vehicles are able to learn from experiences 
agent may refer to a combination of two or more of the stated of each other and perform better actions over time . 
modules . Current autonomous methods include vehicle indi- Although the disclosed figures are primarily described 
vidualized intelligence without collaboration that focus with respect to vehicle implementations , the systems , mod 
operations based on sensory inputs . 55 ules , and devices disclosed herein may be used for other 
The examples provided herein include collaborative applications , where artificial intelligence decisions are made 

multi - agent reinforcement learning . This may be imple- and course of actions are selected . The examples may be 
mented , for example , on a highway , freeway , roadway , or utilized and / or modified for various neural networks . 
other multi - vehicle environment . The collaborative multi- FIG . 1 shows a driver assistance network 10 in a mixed 
agent reinforcement learning approach may also be imple- 60 autonomous operating environment . The driver assistance 
mented in an actual vehicle environment , in a simulated network 10 may include various vehicle communication 
environment , or other multi - agent environment where mul- devices ( or devices that transmit vehicle related informa 
tiple agents are able to interact . Each of the agents is able to tion ) , such as vehicle control modules 12 of vehicles 14 , 
learn behaviors of that agent and / or corresponding vehicle road side control modules 16 of road side units ( or road side 
and behaviors of the other agents and / or corresponding 65 devices ) 18 , a server control module 20 of a service provider 
vehicles . The stated behaviors are learned over time based 22 , and / or other vehicles communication devices , such as 
on feedback data , sensor data , and shared data collected in communication devices in a base station 24 or a satellite 26 . 
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The vehicle related information may include messages and nate locations for each vehicle and obstacle from level L2 
or signals including information pertaining to the vehicles and based on this defines a simple path to a location and 
14 and / or objects within predetermined distances of the controls vehicle actuators to follow that intended path . The 
vehicles 14. As an example , the server 35 may be imple- information and data may be transferred between level L3 
mented as a cloud - based server and the server control 5 and levels L1 and L2 as shown in FIG . 5 or via a robot 
module 20 may be implemented as a RLP module . A portion operating system ( ROS ) feed of a virtual robot experimen 
of and / or a version of the RLP algorithm described below tation platform ( VREP ) . 
may be implemented by each of the vehicle control modules Level L2 , in addition to the above data , receives coordi 
12 , road side control modules 16 , and the server control nate locations for each of the vehicles and obstacles from 
module 20. In addition , one or more levels of the RLP 10 level L3 for a particular time in the future , which is tuned for 
architecture disclosed herein may be implemented by the performance based on communication and processing 
vehicle control modules 12 , road side control modules 16 , speeds of the modules of the corresponding vehicles . Level 
and the server control module 20 . L2 is responsible for high - speed responses , smooth path 

The vehicles 14 include the vehicles control modules 12 planning , and obstacle avoidance . Level L2 treats level L3 
and transceivers 30 for vehicle - to - vehicle communication 15 directives including the coordinate locations as objectives to 
and communication with the other vehicle communication attempt to achieve . Level L2 places a higher priority on 
devices , such as communication with transceivers 32 , 34 of avoiding a collision if a conflict with L3 objectives exists . 
the road side devices 18 and the service provider 22. The Level L2 updates the coordinate locations to provide the 
service provider 22 may include a server 35 , which includes updated coordinate locations . Level L2 may feed informa 
the server control module 20 , the transceiver 34 , and a 20 tion regarding an emergency maneuver back to level L3 to 
memory 36. The memory 36 may store vehicle information , improve tuning of reinforcement learning rewards . Continu 
such as that described herein , which may be shared with the ous learning feedback for reinforcement learning is pro 
vehicles 14 . vided . If reinforcement learning results in a “ bad decision ” , 

The driver assistance network may be a dedicated short then a correction is made at lower level control and a policy 
range communication ( DSRC ) network , a cellular vehicle- 25 is modified for a new reinforcement learning decision . 
to - everything ( C - V2X ) network , or other vehicle informa- Level L3 , in addition to receiving the perception infor 
tion sharing network including V2X communication . As an mation , vehicle states , obstacle states , locations of vehicles , 
example , the DSRC network may be a 1 - way or 2 - way short locations of obstacles , and other data also receives collision 
to medium range wireless communication system using 75 avoidance information and other statistical information form 
mega - hertz ( MHz ) of spectrum in a 5.9 giga - hertz ( GHz ) 30 level L2 . Level L3 tunes rewards of a policy based on this 
band , which is allocated for transfer of automotive infor- information and data as further described below . A reward 
mation . refers to a positive or negative feedback through interaction 

FIG . 2 an autonomous vehicle system 50 incorporating a in an environment . A programmer may define rewards / 
RLP system architecture . In the example shown , a cloud- punishments for actions . A mapping between actions and 
based network 52 is shown including a RLP module 54 that 35 rewards and / or punishments may be stored in the memory 
is in communication with multiple agents 56. The cloud- 208. The actions performed that yielded high or low rewards 
based network 52 may include a server 57 including a server may also be stored in the memory 208. As an example , 
control module 59 having the RLP module 54. Although the rewards may be generated based on a predetermined reward 
RLP module 54 is shown as being implemented in the function . The rewards may be determined by , for example , 
cloud - based network 52 , a similar RLP module may be 40 the RLP module 206 or some other module of the vehicle . 
implanted by each of the agents . The RLP modules imple- An agent may receive and / or generate a reward for each 
ment the RLP system architecture . An example of the RLP action performed by the agent . A reward may be in the form 
system architecture is shown in FIG . 3 . of a scoring value ( e.g. , a value between 0 and 1 or a value 
As an example , the each of the agents 56 may refer to one between -1 and 1 ) for a particular set of one or more actions 

or more modules of a respective vehicle . The agents 56 may 45 performed by a vehicle . In an embodiment , a positive value 
transmit first signals 58 including vehicle and / or obstacle refers to a reward and a negative value refers to a punish 
information to the RLP module 54 and receive second ment . A policy refers to a planned set of paths and corre 
signals 60 including vehicle control commands . The vehicle sponding actions to be taken for each vehicle in an envi 
and obstacle information may include positions of vehicles ronment . 
and obstacles , states of vehicles , paths of vehicles , etc. The 50 Level L3 determines the coordinate locations to level L2 
vehicle control information and / or commands may include , based on the stated information and data . The coordinate 
for example , requested paths for the vehicles to follow , locations are for each vehicle and obstacle at a fixed point in 
speeds , action plans , timing information , etc. The agents 56 the future . These are objectives given a current understand 
may refer to , for example , the vehicle control modules 12 ing of an entire state space of the system as provided by a 
and / or the road side control modules 16 of FIG . 1 and the 55 model of the system . Level L3 uses RL to learn higher - level 
server 57 may refer to the server 35 of FIG . 1 . vehicle coordination policies from learning datasets pro 
FIG . 3 shows an example of an autonomous vehicle vided via simulation or real - traffic recorded data . Policies 

system 70 incorporating a RLP system architecture 72 that are transferred real - time to automated vehicles in a multi 
has multiple levels L1 - L3 . Details of the levels are further vehicle and multi - lane environment . Level L3 controls a 
shown and described with respect to FIG . 5. A portion or all 60 highest level of abstraction for the vehicles , which is a 
of the RLP system architecture may be implemented by each spatial formation the vehicles are attempting to maintain at 
of a cloud - based network server , a service provider server , any moment in time . One global policy can be learned from 
a vehicle , a simulator , a road side device , and / or other agent . the experiences of all of the vehicles in a simulation or in an 

Level L1 determines and / or collects perception informa- actual driving scenario and transferred to the vehicles . 
tion , vehicle states , obstacle states , locations of vehicles , 65 Collective results of local policies results in emergent col 
locations of obstacles , and other data and provides this data laborative driving behavior of the vehicles as a highest 
to the L2 and L3 levels . Level L1 receives updated coordi- priority while satisfying safety critical obstacle objectives . 
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Examples of the levels L1 - L3 are shown in FIG . 5 and display 146 , the infotainment module 164 , and the audio 
further described below with respect to FIGS . 5-8 . system 166 may be used to alert a drive of the host vehicle 
As shown in FIG . 3 , level L1 may receive signals includ- 100 and / or to receive requests from the driver . 

ing information and data from and / or associated with mul- The host vehicle 100 may include a window / door system 
tiple vehicles 74 and obstacles 76. This is represented by 5 170 , a lighting system 172 , a seating system 174 , a mirror 
dashed signal lines 78. Shared information and data may be system 176 , a brake system 178 , electric motors 180 , a 
provided from level L1 to the vehicles 74 , as represented by steering system 182 , a power source 184 , an engine 186 , a 
solid signal lines 80 . converter / generator 188 , a transmission 190 , and / or other 
FIG . 4 shows a host vehicle 100 including a vehicle vehicle devices , systems , actuators , and / or components . The 

assistance system 101 incorporating a vehicle control mod- 10 stated items 170 , 172 , 174 , 176 , 178 , 180 , 182 , 186 , 188 , 190 
ule 102 including a data processing module 104 , a RLP may be controlled by the vehicle control module 102 and / or 
module 106 , a path module 108 and a driver assistance the driver assistance module 110. The driver assistance 
module 110. The data processing module 104 collects data module 110 may select a course of action and signal one or 
from sensors 126 and stores the sensor data and / or associ- more of the stated items to perform certain actions . As an 
ated parameters in a memory 122. The RLP module 106 15 example , the driver assistance module 110 may decide to 
performs collaborative RL operations including performing merge the vehicle 100 into an adjacent lane and / or to turn the 
a collaborative RLP algorithm that is described with respect host vehicle 100 to avoid a collision . This may include 
to FIG . 7. The path module 108 determines current and signaling the steering system 182 to steer the vehicle into the 
future paths of the host vehicle 100 and other nearby adjacent lane or to make a left or right turn . The driver 
vehicles . The driver assistance module 110 controls actua- 20 assistance module 110 may signal the stated items to per 
tors to follow certain policy objectives and a corresponding form various autonomous operations . 
path for the host vehicle . The vehicle control module 102 , the infotainment module 

The host vehicle 100 may include the memory 122 , a 164 , and other control modules 168 may communicate with 
transceiver 124 , sensors 126 , and a display 146. The each other via a controller area network ( CAN ) bus 169. The 
memory 122 may store , for example , data referred to herein 25 vehicle control module 102 may communicate with vehicle 
including : vehicle sensor data and / or parameters 130 ; control modules of other vehicles via the transceiver 124 . 
vehicle behavior data 132 of the host vehicle 100 and / or of The vehicle control modules may share information regard 
other vehicles ; host vehicle data 134 ; data of other vehicles ing location , speed , acceleration , heading , predicted path , 
136 ; environmental condition data 138 ; and other data 140 . and / or other vehicle related information for each corre 
Examples of other data are shown in FIG . 5. The stated 30 sponding vehicle and / or other detected vehicles . 
vehicle data may include vehicle - to - vehicle data transmitted The vehicle control module 102 may control operation of 
between vehicles via the transceiver 124. The memory 122 the items 170 , 172 , 174 , 176 , 178 , 180 , 182 , 186 , 188 , 190 
may also store applications which may be executed by according to parameters set by the vehicle control module 
the vehicle control module 102 to perform operations 102 and / or one or more of the other modules 168. The 
described herein . 35 vehicle control module 102 may receive power from a 

The sensors 126 may include , for example , a speed sensor , power source 184 which may be provided to the engine 186 , 
an acceleration sensor , proximity sensors , an accelerator the converter / generator 188 , the transmission 190 , the win 
pedal position sensor , a brake pedal position sensor , a dow / door system 170 , the lighting system 172 , the seating 
steering wheel position sensor , etc. The sensors 126 may system 174 , the mirror system 176 , the brake system 178 , 
include cameras , objection detection sensors , temperature 40 the electric motors 180 and / or the steering system 182 , etc. 
sensors , accelerometers ( or acceleration sensors for detect- The engine 186 , the converter / generator 188 , the trans 
ing acceleration in X , Y , Z directions or yaw , pitch and roll ) , mission 190 , the window / door system 170 , the lighting 
a vehicle velocity sensor and / or other sensors that provide system 172 , the seating system 174 , the mirror system 176 , 
parameters and / or data associated with the state of the the brake system 178 , the electric motors 180 and / or the 
vehicle 100 , states of objects ( e.g. , obstacles , animate 45 steering system 182 may include actuators controlled by the 
objects , vehicles , etc. ) near the vehicle 100 , and / or infor- vehicle control module 102 to , for example , adjust fuel , 
mation regarding an environment in which the vehicle 100 spark , air flow , throttle position , pedal position , door locks , 
is located . The sensors 126 detect environmental conditions window position , seat angles , lumbar support positions 
and status of vehicle devices . and / or pressures , mirror position , stereo presets , etc. This 

The display 146 may be a display on a dashboard of the 50 control may be based on the outputs of the sensors 126 , the 
host vehicle 100 , a heads - up - display , or other display within navigation system 160 , and the GPS receiver 162. The stated 
the host vehicle 100 and used to provide driver assistance control may also be performed to match parameters of a user 
signals to a vehicle operator . Driver assistance signals may profile , which may be adjusted by a user . The audio system 
be generated by the driver assistance module 110 and 166 may include a stereo having channel presets and volume 
indicated via an infotainment module 164 on the display 146 55 settings that may be set by a user and adjusted according to 
and / or the audio system 166 . a user profile by one or more of the modules 102 , 168 . 

The host vehicle 100 may further include a navigation The driver assistance module 110 may assist a driver of 
system 160 with a global positioning system ( GPS ) receiver the host vehicle 100 by ( i ) passively signaling the driver with 
162 , the infotainment module 164 , the audio system 166 and suggested operations to perform and / or warning messages , 
other control module 168 , such as an engine control module , 60 and / or ( ii ) actively assisting and / or controlling operations of 
a transmission control module , a motor control module , an one or more actuators and / or devices of the vehicle 100 , 
autonomous control module , a hybrid control module , etc. such as one or more of the items 170 , 172 , 174 , 176 , 178 , 
The navigation system 160 and GPS receiver 162 may be 180 , 182 , 186 , 188 , 190. This may include adjusting set 
used to monitor locations of the host vehicle 100 and other parameters of the host vehicle 100. The driver assistance 
vehicles and predict paths of the host vehicle 100 and the 65 module 110 may communicate with and / or receive vehicle 
other vehicles . The GPS receiver 162 may provide velocity behavior signals , path prediction signals , decision signals , 
and / or direction ( or heading ) of the host vehicle 100. The path negotiation signals , policy negotiation signals , driver 
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assistance signals , and / or other signals from other vehicles the DQN for each of the vehicles is used for collaboration 
and / or network devices ( e.g. , mobile devices , cloud - based purposes . Each of the 5 layers is a multi - level perceptron 
devices , etc. ) described herein via the transceiver 124 . that incorporates its own non - linearity in a classifier func 
Similar signals may also be transmitted from the driver tion , which cannot be contained in a single layer . Adding 
assistance module 110 to other vehicles via the transceiver 5 more non - linearity is useful for the RLP algorithm , but there 
124 . is a tradeoff between this computational complexity , which FIG . 5 shows a multi - level RLP system 200 ( hereinafter increases with an increase in a number of layers . The best referred to as “ RLP system 200 ) incorporating a level L3 value is heuristically determined to be 5 . with dual neural network modules 202 , 204 having respec 
tively an evaluation network 203 and a target network 205. 10 include actions of other friendly ( or autonomous ) vehicles in For collaboration , the agent / state space is augmented to 
The RLP system 200 includes a RLP module 206 having order to decide on the action to be taken for a given vehicle . levels L1 - L3 , a memory or server 208 and a network training 
server 210. The items stored in the memory 208 may be The operations performed for collaboration include : 1 ) for 
stored similarly in the memories 36 and 122 of FIGS . 1 and each agent vehicle , add actions of other agents ( F1 , F2 ; FN ) 

to the state in which the decision / action for the given agent 4 . 
The levels L1 - L3 are examples of the levels L1 - L3 shown is chosen ; 2 ) once the actions of the agents are sampled from 

in FIG . 3. Level L1 may include a transceiver 212 , a data the current state , sample the action from Q ( s ; a ) for the 
processing module 214 , a path module 216 and a driver current agent ; and 3 ) continue the RLP algorithm . 
assistance module 218. The transceiver 212 may include a Three different exponential domains may be used to 
physical layer ( PHY ) module 220 , and a medium access 20 gauge performances of different algorithms . A first domain 
control ( MAC ) module 222. Although shown as part of the may refer to the multi - agent collaborative DQN with PER 
RLP module 206 , the transceiver 212 may be separate from algorithm as disclosed herein , which may be compared to 
the RLP module 206. The modules 214 , 216 218 are the performances of other multi - agent DQN algorithms ( or 
examples of the modules 104 , 106 , 108 of FIG . 4. The PHY a second domain ) and / or a DQN with PER algorithm ( or a 
module 220 transmits and receives object data and informa- 25 third domain ) . The third domain refers to a single non 
tion disclosed herein , policies , training data , vehicle states , collaborative DQN . The DQN with PER algorithm of the 
vehicle actions , weights of the networks 202 , 204 , etc. to and third domain is a simple implementation of a DQN policy 
from the network training server 210 , other vehicles , net- for a single vehicle without accounting for other vehicles . 
work servers , road side units , etc. The evaluation network module 202 ( i ) receives stochas 

Level L2 may include a coordinate location module 224. 30 tic gradient loss back propagation data from the target 
The coordinate location module 224 updates future coordi- network module 204 , ( ii ) determines first Q values and 
nate locations received from the collaboration enabling provides the first Q values to the policy module 228 , ( iii ) 
module 226 to provide updated future coordinate locations . stores a current learned policy in the memory 208 , ( iv ) sends 
The coordinate location module 224 may also provide environment and state data to the collaboration enabling 
updated policies . These actions are performed based on the 35 module 226 , and ( v ) provides updated data to the target 
received sensor , coordinate location data of objects , state network module 204. The sending of updated data to the 
information of vehicles , policies and future coordinate loca- target network module 204 may include setting Q values of 
tions , etc. Level L2 may attempt to implement the decisions the target network module 204 to the values of the 
of level L3 . For example , if the collaboration enabling evaluation network module 202. A Q value or Q ( s , a ) refers 
module determines that other vehicles are in close proximity 40 to how good it is to take a particular action for a particular 
to the host vehicle and / or the other vehicles are autonomous state , where ‘ s ' is the state and ' a ' is the action performed . 
vehicles capable of sharing state information , then collabo- The collaboration enabling module 226 determines the poli 
ration between the host vehicle and the other vehicles is cies and future coordinate locations based on the environ 
enabled . This may include an exchange of signals for ment and state data , the sensor data , location data , and state 
making path decisions . 45 information . 

Level L3 may include an evaluation network module 202 , The policy module 228 based on the Q values received 
a target network module 204 , a collaboration enabling from the evaluation network module 202 determines ( or 
module 226 and a policy module 228. Level L3 may attempt learns ) weights to be stored in the memory 208 and applied 
to implement the decisions of level L1 . The evaluation at nodes of the neural networks of the network modules 202 , 
network module 202 may be implemented as a first neural 50 204. The weights of the neural network of the target network 
network having a first set of weights . The target network module 204 may be different than the weights of the 
module 204 may be implemented as a second neural net- evaluation network module 202 . 
work having a same structure as the first neural network and The policy module 228 may also determine policies 234 
a second set of weights different than the first set of weights . to follow and store the policies 234 in the memory 228. A 
The target and evaluation networks 203 , 205 have 5 hidden 55 policy is a function that maps states to actions . The function 
layers . All of the hidden layers are fully connected and a returns one of multiple possible actions when an agent 
corresponding rectified linear unit ( ReLU ) implements an queries the policy using a current state of the agent . The 
activation function . The layers of the evaluation networks neural networks are non - linear function approximating net 
203 are connected . The layers of the target network 205 are works that represent a function in an algorithm . The evalu 
connected . In each of the evaluation and target networks 60 ation network 203 weights and approximates a current 
203 , 205 , the nodes of a layer are connected to the nodes of policy of an agent . The collaboration enabling module 226 
a previous layer . Fully connected refers to fully connecting enables collaboration and causes a group of vehicles includ 
the neurons in a previous layer to the neurons in a current ing a host vehicle to collaborate with each other to avoid 
layer . Each neuron in the output layer of the 5 layers obstacles and rogue vehicles . When disabled , the vehicles do 
corresponds to a separate action variable . For the multi- 65 not collaborate . The current learned policy signal transmit 
agent aspect of the RLP algorithm ( or multi - agent collab- ted from the evaluation network module 202 to the memory 
orative DQN with PER algorithm ) , the two deep layers on is a most recent policy estimate . This estimate is updated at 
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each training step or iteration of operations 408 , 410 , 412 , equation 1 , where a next action ag + 1 comes from the current 
414 , 416 , 418 , 420 , 422 , 424 , 426 , 428 , 430 , 432 , 434,436 policy it , y is a discount factor . 
of FIG . 7 . 
The memory 208 may be referred to as and / or include an 

experience replay memory . The memory 208 may store the 5 Q ( s , a ) = r ( s , a ) + v7 ( S : +1 , Sp , as ) O ( $ : + 1 , ar + 1 ) ( 1 ) 

RLP algorithm 230 , tables 232 , policies 234 , object data 236 
( animate and inanimate object data include vehicle data , 
obstacle data , etc. ) , states 238 , actions 240 , experiences 242 , The current policy n refers to currently learned param 
transitions 244 , etc. eters of a policy function which determines how a vehicle 

The network training server 210 may be implemented by behaves given a state of the vehicle . These parameters are 
the service provider 22 of FIG . 1 and / or in the cloud - based updated as the RLP module 206 implementing the RLP 
network 52 of FIG . 2. The network training server 210 may algorithm learns and as such a new policy is being created 
include a training control module 250 , a memory 252 and a at any moment in time . The discount factor is a bound in 
transceiver 254. The training control module 250 reinforcement learning that makes the RLP algorithm con train may 
the neural networks of the network modules 202 , 204 . verge by making an infinite sum finite . Normally reinforce 

The RLP module 206 may execute the RLP algorithm ment learning agents optimize the discounted reward rather 
than the simple rewards , as without the discount factor . The 

230 , which is a collaborative prioritized experience replay discount factor is used to indicate relative importance of 
type algorithm that is used in each operating environment . most recent rewards as compared to obtainable future 
This is different from a simple DQN with prioritized expe- 20 rewards . The discount factor may have a value between 0 
rience replay as described in the International Conference on and 1 , where 1 means that the future rewards dominate 
Learning Representations ( ICLR ) 2016 conference paper whereas a value of O means that only the most recent 
titled “ Prioritized Experience Replay ” by Tom Schaul , John rewards matter . In one embodiment , the discount factor is 
Quan , loannis Antonoglou and David Silver . This is because 0.9 . The Q values representing a value of taking action at a 
the disclosed RLP algorithm is a multi - agent and collabora- 25 state diverge . 
tive based algorithm . For the multi - agent aspect of the As an example , when an environment has multiple 
disclosed systems , there are a certain number of different vehicles , state inputs for a first vehicle may include : X , Y 
autonomous agents ( e.g. , four vehicles with corresponding distances between the first vehicle and the other vehicles ; X , 
modules ) that are collaboratively avoiding a rogue vehicle . Y distances between the first vehicle and obstacles ; X , Y 

The autonomous agents share state and action information 30 distances from the first vehicle to a left edge of a treadmill 
with other vehicles . The autonomous agents perform rein- ( or road ) , X , Y distances from the first vehicle to a right edge 
forcement learning that treats the system of vehicles as a of the treadmill ( or road ) ; X , Y distances from the first 
Markov design process , where each vehicle interacts inde- vehicle to a top of the treadmill or road ( or highest point of 
pendently in the system and the system can be described by a road surface as seen on a screen ) ; X , Y distances from the 
multiple tuples ( S , A , T , R ) , where S is a state of a 35 first vehicle to a bottom of the treadmill or road ( or highest 
corresponding vehicle , A is an action to be performed by the point of a road surface as seen on a screen ) ; and X , Y 
corresponding vehicle , T refers to a state transition dynamics distances to lane edges . Action inputs for the first vehicle 
function ( also referred to as dynamics ) of the corresponding may include : actions of each of the other vehicles ; all 
vehicle , and R is a reward value for performing the action A available inputs defining a state of the first vehicle . A 
for the state S. T indicates how the state changes given 40 treadmill refers to a simulated continuous highway environ 
actions performed by the corresponding vehicle ( or agent ) . ment and include multiple lanes of traffic . These inputs may 
A Markov decision process ( MDP ) defines a system with be provided to , for example , level 13 and the network 
states , actions ( or decisions ) , dynamics and rewards < S , A , modules 202 , 204 . 
T , R > . Reinforcement learning is a family of decision The collaboration enabling module 226 and / or the policy 
making methods for finding an optimal policy for taking 45 module 228 monitor reward values for collaboration pur 
actions in an MDP to maximize expected rewards over time poses . As an example , Table 1 below includes example 
using only experience and rewards . A state action value events shown in reward based ranking from a most negative 
Q " ( S , a , ) is an estimate of expected value of taking an action ranking ( or worst reward value ) to a most positive ranking 
at a particular state and following a policy ( a ; | ,, 0 , ) from ( or best reward value ) . The precise reward values is a matter 
then onwards . In an embodiment , a goal is to optimize a Q of tuning . The rewards may be constrained to be in a range 
value of a policy , for example , optimizing the value of of ( -1,1 ] 

TABLE 1 

Reward Ranking Event 

Most Negative Colliding with another vehicle on the treadmill ( or road ) . 
Impacting the side of the treadmill ( or road ) by moving off the 
treadmill ( or road ) to the left or the right excluding the 
situation of a planned exit from the treadmill ( or road ) . 
Falling off the treadmill ( or road ) from the front or back . 
Driving close to the edges of a lane . 
Driving close to the edges of the treadmill ( or road ) . 
Maintaining a safe situation ( no collision occurred for the 
recent time period ) . 
Successfully returning to a collaborative driving setting to 
follow . 
Keeping the lane by staying between lane markings of a 
current lane if there is no other threat . 

Neutral Even 

+ 

+ 
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TABLE 1 - continued 

Reward Ranking Event 

Most Positive ++ Successfully changed followed car in a way that minimizes 
risk of collisions across all nearby cars . 

10 

Tuning may be performed manually based on results and The networks are used to calculate the associated Q values 
experience or automatically . The object of the tuning is to ( e.g. , Qtarget and Qeval values ) . An example of the RLP 
achieve a target ( e.g. , no crash ) . Rewards may be defined by algorithm is shown in FIG . 7 . 
human designers to guide an algorithm to automatically find The systems disclosed herein may be operated using 
good policies . numerous methods , an example method is illustrated in FIG . 

In addition to the states mentioned in Table 1 , for col- 7. FIG . 7 shows a method of operating the driver assistance 
laboration , actions taken by other vehicles are also consid- 15 system of FIG . 4 and the multi - level RLP system of FIG . 5 . 
ered when deciding an action of a host vehicle . The actions Although the following operations are primarily described 
of the vehicles are considered part of a state space . Thus , the with respect to the implementations of FIGS . 1-8 , the 
state space of the first vehicle includes additional informa- operations may be easily modified to apply to other imple 
tion including the actions of the other nearby vehicles . mentations of the present disclosure . The operations may be 
An action may involve a movement to a location on a 20 iteratively performed . 

nearby grid having predetermined dimensions ( e.g. , a 3x3 The method may begin at 400. The principle of prioritized 
grid ) . An example grid representation of a driving domain is experience replay ( PER ) is used to train the evaluation 
shown in FIG . 6. In FIG . 6 an agent vehicle A ( or host network 203 of the DQN . The target network 205 of the 
vehicle ) is shown in a first grid 300 for an area close to the DQN is not trained . This involves random batches of the 
vehicle A. Two autonomous agents ( or friendly vehicles F1 25 memory 208 to be used for training rather than the whole 
and F2 ) and a rogue agent R are shown . The agents ( or memory 208 for improving learning efficiency of the neural 
vehicles ) A , F1 , F2 are located in a second area represented networks . This is because the experience in successive steps 
by a second grid 302 and are collaboratively controlled via may not be too different from each other . A separate target 
communication between the vehicles to negotiate paths , network 205 is used as the stable network and for calculating 
speeds , and movement timing of the vehicles . The first grid 30 a loss value , as described below . If the evaluation network 
300 is smaller than and within the second grid 302 . 203 keeps changing , then a whole system would fall into 

The state transition function T ( or TSOIS ; A ) describes a local feedback loops . 
system changing from moment to moment , where S is the PER is implemented to weight the different experiences 
previous or current state , SO is a new or future state , and A with the probability of the absolute value of error between 
is the action taken ) . The dynamics are provided by a real 35 the target and calculated Qeval values . PER is enabled in the 
physical system or simulator . The collaborative RLP algo- RLP algorithm and provides the ability to do priority based 
rithm is used to learn from experiences through interactions sampling from experience replay , instead of uniform sam 
and as opposed to learning the dynamics provided . pling , as previously done in a simple DQN algorithm . The 

In an embodiment , the collaborative RLP algorithm is a higher the probability of a node of the neural network , the 
model free deep reinforcement learning method and is 40 higher the probability of the node being chosen in a mini 
" off - policy " in the sense that an explorative operation is batch sample . Mini batch sampling is a type of preprocess 
performed with epsilon probability at each action per- ing of data used for training a network to help finding 
formed . The epsilon probability refers to a set low probabil- coefficients ( or weights ) . A mini - batch gradient descent is a 
ity of an event happening and means that with a small variation of the gradient descent algorithm that splits the 
probability the agent takes an action , which is not a current 45 training dataset into small batches , which are used to cal 
best choice , to encourage exploration . Thus , the RLP algo- culate model error and update model weights . 
rithm does not always follow a best policy . With an epsilon Also , a double DQN algorithm is available for use as a 
probability , the agent takes an exploratory move that is not parameter choice which further stabilizes the multi - agent 
a best move according to a policy of the agent . This is done collaborative DQN with PER algorithm disclosed herein . 
to improve learning of an environment by trying out actions , 50 The multi - agent collaborative DQN with PER algorithm 
which may not have been tried before . may overestimate the sub - optimal actions . A double DQN 

The associated DQN has two neural networks having a having two neural networks uses a first ( or separate ) network 
same structure , but with different weights . The neural net- for choosing an action and a second ( or different ) network 
works are called the target network 205 and the evaluation for calculating a Q value . This does not suffer from the 
network 203 , respectively . The target network 205 is con- 55 problem of overestimation . 
sidered to provide a stable policy that is updated every At 402 , a replay memory ( e.g. , the memory 204 ) is 
predetermined number of actions ( or instances ) . An action initialized . This may include initializing variables and / or 
may be performed , for example , once every second . The parameters , resetting counters , storing data and / or informa 
evaluation network 203 is updated every step ( or action ) . tion collected in the memory , etc. At 404 , an action value 
The evaluation and target networks 203 , 205 refer to the 60 function ( or the first neural network ) of the evaluation 
neural networks of the network modules 202 , 204 , respec- network module 202 , associated with the leval values , is 
tively . The evaluation network is a more dynamic network initialized with random weights D. 
that is updated at each learning step in the RLP algorithm . At 406 , an initial state s of the host vehicle 100 is 
The target network 205 is a more stable network and is determined and a reset time counter is set to zero . The initial 
updated once every predetermined number of moves ( e.g. , 65 state may be determined by , for example , a data processing 
1000 actions ) . The target network 205 is maintained as a module ( one of the data processing modules 104 , 214 ) . To 
separate network to avoid falling into local feedback loops . determine the initial state s of the host vehicle , the vehicle 
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control module 102 and / or the data processing module evaluation network 203 , which includes updating the 
receives and / or monitors data , which may include simula- weights of the evaluation network 203 . 
tion data , open source data , testing data , historical data , At 436 , the RLP module 206 and / or the evaluation net 
sensor data , position data , vehicle state data , vehicle action work module 202 determines whether the iteration counter 
data , path information , vehicle decisions , etc. and / or other 5 I is equal to a predetermined number ( e.g. , 1000 ) . After 
data describing different aspects of an environment . The every fixed number of iterations , ( e.g. , 100 or 1000 itera 
stated data may be of the host vehicle 100 and / or other tions ) the evaluation network parameters . The policy may be 
vehicles and objects . This data may include data pertaining iteratively refined over several thousands of iterations before 
to the host vehicle 100 and other vehicles and objects near an acceptable policy is learned . If this is TRUE , then 
the host vehicle . The data may be stored in the memory 122 10 operation 438 is performed , otherwise operation 440 is 
and may be received from modules within the host vehicle performed 
100 and / or a remote network device via the transceiver 124 . At 438 , the target network module 204 sets Qtarget equal 
The data may include , for example , vehicle acceleration to Qeval . The weights of the evaluation network 203 are 
data , vehicle velocity data , vehicle heading data , vehicle copied over to the target network 205 and become the new 
position data , etc. The data processing module may receive 15 weights of the target network 205. At 440 , the RLP module 
data from the GPS receiver 162. The data may also include 206 and / or the evaluation network module 202 sets the state 
data received from and / or shared by one or more other s equal to the new state s ' . 
vehicles . At 408 , the RLP module 206 and / or the evaluation At 441 , the RLP module 206 and / or the evaluation net 
network module 202 sets an iteration ( or event ) counter I work module 202 determines whether the time counter is 
equal to zero . 20 less than or equal to a predetermined amount of time . If the 

At 410 , the RLP module 206 and / or the evaluation net- time counter is less than or equal to the predetermined 
work module 202 sets the iteration counter I equal to I plus amount of time , then operation 408 is performed , otherwise 
one . At 412 , the RLP module 206 and / or the evaluation the method may end at 442 . 
network module 202 selects an action a corresponding to The above - described operations of FIG . 7 are meant to be 
equation 2 25 illustrative examples . The operations may be performed 

sequentially , synchronously , simultaneously , continuously , 
a = arg max'.Leval ( s , a ' ) ( 2 ) during overlapping time periods or in a different order 

At 414 , the RLP module 206 and / or the evaluation net- depending upon the application . Also , any of the operations 
work module 202 selects a random action with probability € . may not be performed or skipped depending on the imple 
At 416 , level L1 via the transceiver 212 instructs the driver 30 mentation and / or sequence of events . 
assistance module 110 to perform the action ' a ' selected at FIG . 8 is a data flow diagram illustrating determination of 
412 . Q and loss values associated with the dual neural networks 

At 418 , the RLP module 206 and / or the evaluation net of the multi - level RLP system of FIG . 5. In FIG . 8 , the 
work module 202 observes a reward r and new state s ' . At random mini batch data is collected from the experience 
420 , the RLP module 206 and / or the evaluation network 35 replay memory 208 and provided as input data to the 
module 202 stores an experience tuple < s , a , r , s ' > in the network modules 202 , 204 and / or corresponding neural 
memory 208 . networks . Each mini batch of data may include , for example , 

At 422 , the RLP module 206 and / or the evaluation net 32 bits of data . 
work module 202 samples random transitions << ss , aa , rr , The network modules 202 , 204 and / or the corresponding 
ss ' > from the memory 208. At 424 , the target network 40 neural networks determine Qtarget ( designated as 502 ) and 
module 204 calculates a target value for each mini batch Reval ( designated as 504 ) , which as described above are then 
transition . used to determine the loss value ( designated as 506 ) . The 

At 426 , the RLP module 206 determines whether a new target network module 204 receives the levat and weights of 
random transition state ss ' terminal . If the new random the evaluation network module 202 after every predeter 
transition state ss ' is terminal , then operation 428 is per 45 mined number of iterations and / or events ( e.g. , 500 itera 
formed , otherwise operation 430 is performed . At 428 , the tions of operations 408 , 410 , 412 , 414 , 416 , 418 , 420 , 422 , 
RLP module 206 sets a random counter value tt equal to a 424 , 426 , 428 , 430 , 432 , 434 , 436 of FIG . 7 ) . 
random transition reward value rr . At 430 , the RLP module 
206 sets the random counter value tt equal to the random Simulator 
transition reward value RR plus a product of the discount 
factor y and a maximum of a Q value , as represented by The method of FIG . 7 may be applied to a driving 
equation 3 . simulation environment via a driving simulator . The driving 

simulator may include the RLP system architecture shown in 
tt = rr + ymax'.Q ( ss ' , aa ' ) ( 3 ) FIG . 3 and VREP software . As an example , the simulator 

55 may have 5 vehicles running in parallel on a treadmill , At 432 , the RLP module 206 , the target network module where a goal of each of the vehicles is to : avoid hitting the 204 , and / or the target network 205 determines a loss value , other vehicles , avoid coming in contact with edges of the which may be equal to a difference between Qtarget and Qeval treadmill ; and maintain driving in a current lane of traffic . of the evaluation and target networks 203 , 205. In one Four of the vehicles may be autonomous ( or self - driving ) embodiment , the loss value is determined according to 60 vehicles . The four autonomous vehicles share state infor equation 4 . mation and next possible moves and / or intended actions 
with each other . The fifth vehicle may be a rogue vehicle that Loss = 1 / ( tt - Q ( ss , aa ) ) ? ( 4 ) is manually driven or the simulator randomly assigns goal 

At 434 , the evaluation network 203 is trained based on the points for the same . The aim of the rogue vehicle is to collide 
determined loss value . The loss value is used to update the 65 into any of the other vehicles . The four autonomous vehicles 
evaluation network 203 based on a stochastic gradient back avoid the rogue vehicle via collaborative maneuvers on the 
propagation operation . Back propagation is used to train the treadmill . 
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The implementation of reinforcement learning in the disclosure , that relationship can be a direct relationship 
stated example simulation environment demonstrates how where no other intervening elements are present between the 
machine learning can be used to learn high - level vehicle first and second elements , but can also be an indirect 
coordination policies from simulated experiences and trans- relationship where one or more intervening elements are 
fer the policies to a real - time multi - vehicle and multi - lane 5 present ( either spatially or functionally ) between the first 
environment . Reinforcement learning methods as used for and second elements . As used herein , the phrase at least one 
finding optimal decision policies from dynamic systems of A , B , and C should be construed to mean a logical ( A OR 
when full mathematical formulation of the dynamics or the B OR C ) , using a non - exclusive logical OR , and should not 
global objective functions are not available . Instead of be construed to mean “ at least one of A , at least one of B , 
calculating an optimal , closed form solution , reinforcement 10 and at least one of C. ” 
learning algorithms are used to learn a similar manner as In the figures , the direction of an arrow , as indicated by 
humans and animals through interacting with the environ- the arrowhead , generally demonstrates the flow of informa 
ment and receiving positive or negative feedback . The tion ( such as data or instructions ) that is of interest to the 
feedback refers to the rewards above - described . Learning illustration . For example , when element A and element B 
involves remembering an abstract mapping from states and 15 exchange a variety of information but information transmit 
actions that yielded high or low rewards . The goal is to find ted from element A to element B is relevant to the illustra 
a policy that maximizes the expected rewards over time . The tion , the arrow may point from element A to element B. This 
reinforcement learning planner will control the highest level unidirectional arrow does not imply that no other informa 
of abstraction for the vehicles which will be the spatial tion is transmitted from element B to element A. Further , for 
formation the vehicles are attempting to maintain at any 20 information sent from element A to element B , element B 
time . Actions at this level are prioritized by importance . may send requests for , or receipt acknowledgements of , the 
Additional situations may be added as the system is devel- information to element A. 
oped . FIG . 6 provides an example grid representation of the In this application , including the definitions below , the 
corresponding domain . term “ module ” or the term " controller ” may be replaced 

Rewards ( positive feedback ) or penalties ( or negative 25 with the term “ circuit . ” The term “ module ” may refer to , be 
feedback ) for events is provided . The positive and negative part of , or include : an Application Specific Integrated Circuit 
feedback may be generated internally to each vehicle and / or ( ASIC ) ; a digital , analog , or mixed analog / digital discrete 
provided to a vehicle by another vehicle , roadside unit , circuit ; a digital , analog , or mixed analog / digital integrated 
and / or remote server ( e.g. , service provider server or cloud- circuit ; a combinational logic circuit ; a field programmable 
based network server ) . The reward values may be generated 30 gate array ( FPGA ) ; a processor circuit ( shared , dedicated , or 
by a vehicle control module , a driver assistance module , a group ) that executes code ; a memory circuit ( shared , dedi 
server control module , and / or other controller monitoring cated , or group ) that stores code executed by the processor 
results of actions performed and providing feedback on the circuit ; other suitable hardware components that provide the 
results . The events are ordered from most negative to most described functionality ; or a combination of some or all of 
positive . The precise reward values are a matter of tuning . 35 the above , such as in a system - on - chip . 
The rewards may be constrained to be in a range [ -1,1 ] . An The module may include one or more interface circuits . In 
applied reward function may be based on a table of rankings , some examples , the interface circuits may include wired or 
such as that shown by Table 1. Actions that lead to a collision wireless interfaces that are connected to a local area network 
result in negative feedback . Actions that lead to safe driving ( LAN ) , the Internet , a wide area network ( WAN ) , or com 
behaviors result in positive feedback . 40 binations thereof . The functionality of any given module of 

The foregoing description is merely illustrative in nature the present disclosure may be distributed among multiple 
and is in no way intended to limit the disclosure , its modules that are connected via interface circuits . For 
application , or uses . The broad teachings of the disclosure example , multiple modules may allow load balancing . In a 
can be implemented in a variety of forms . Therefore , while further example , a server ( also known as remote , or cloud ) 
this disclosure includes particular examples , the true scope 45 module may accomplish some functionality on behalf of a 
of the disclosure should not be so limited since other client module . 
modifications will become apparent upon a study of the The term code , as used above , may include software , 
drawings , the specification , and the following claims . It firmware , and / or microcode , and may refer to programs , 
should be understood that one or more steps within a method routines , functions , classes , data structures , and / or objects . 
may be executed in different order ( or concurrently ) without 50 The term shared processor circuit encompasses a single 
altering the principles of the present disclosure . Further , processor circuit that executes some or all code from mul 
although each of the embodiments is described above as tiple modules . The term group processor circuit encom 
having certain features , any one or more of those features passes a processor circuit that , in combination with addi 
described with respect to any embodiment of the disclosure tional processor circuits , executes some or all code from one 
can be implemented in and / or combined with features of any 55 or more modules . References to multiple processor circuits 
of the other embodiments , even if that combination is not encompass multiple processor circuits on discrete dies , 
explicitly described . In other words , the described embodi- multiple processor circuits on a single die , multiple cores of 
ments are not mutually exclusive , and permutations of one a single processor circuit , multiple threads of a single 
or more embodiments with one another remain within the processor circuit , or a combination of the above . The term 
scope of this disclosure . 60 shared memory circuit encompasses a single memory circuit 

Spatial and functional relationships between elements ( for that stores some or all code from multiple modules . The term 
example , between modules , circuit elements , semiconductor group memory circuit encompasses a memory circuit that , in 
layers , etc. ) are described using various terms , including combination with additional memories , stores some or all 
“ connected , ” “ engaged , " " coupled , ” “ adjacent , ” “ next to , " code from one or more modules . 
" on top of , " " above , ” " below , " and " disposed . ” Unless 65 The term memory circuit is a subset of the term computer 
explicitly described as being “ direct , ” when a relationship readable medium . The term computer - readable medium , as 
between first and second elements is described in the above used herein , does not encompass transitory electrical or 
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electromagnetic signals propagating through a medium the third level comprises an evaluation network , a 
( such as on a carrier wave ) ; the term computer - readable target network , and a processor configured to 
medium may therefore be considered tangible and non execute instructions of the RLP algorithm ( i ) for 
transitory . Non - limiting examples of a non - transitory , tan collaborative action planning between the host 
gible computer - readable medium are nonvolatile memory 5 vehicle and the other vehicles based on outputs of the 
circuits ( such as a flash memory circuit , an erasable pro evaluation network and the target network , and ( ii ) to 
grammable read - only memory circuit , or a mask read - only generate the refined policy based on reward values 
memory circuit ) , volatile memory circuits ( such as a static associated with a plurality of events , 
random access memory circuit or a dynamic random access the evaluation network and the target network are 
memory circuit ) , magnetic storage media ( such as an analog 10 neural networks that implement Q - learning , and 
or digital magnetic tape or a hard disk drive ) , and optical the processor is configured to execute the instruction to 
storage media ( such as a CD , a DVD , or a Blu - ray Disc ) . determine a loss value , 
The apparatuses and methods described in this application train the evaluation network over the plurality of 

may be partially or fully implemented by a special purpose events based on the loss value , 
computer created by configuring a general purpose computer 15 modify the refined policy based on reward values 
to execute one or more particular functions embodied in after each of the plurality of events , and 
computer programs . The functional blocks , flowchart com after a predetermined number of events , set a first Q 
ponents , and other elements described above serve as soft value of the target network equal to a second Q 
ware specifications , which can be translated into the com value of the evaluation network , wherein the first 
puter programs by the routine work of a skilled technician or 20 Q value of the target network refers to a state and 
programmer . an action of the host vehicle , and wherein the 

The computer programs include processor - executable second Q value of the evaluation network refers to 
instructions that are stored on at least one non - transitory , the state and the action of the host vehicle . 
tangible computer - readable medium . The computer pro- 2. The RLP system of claim 1 , wherein the evaluation 
grams may also include or rely on stored data . The computer 25 network has a same structure as the target network , but a 
programs may encompass a basic input / output system different set of weights . 
( BIOS ) that interacts with hardware of the special purpose 3. The RLP system of claim 1 , wherein the processor is 
computer , device drivers that interact with particular devices configured to : 
of the special purpose computer , one or more operating during training of the evaluation network , update weights 
systems , user applications , background services , back- 30 of the evaluation network ; and 
ground applications , etc. after the predetermined number of events , match weights 
The computer programs may include : ( i ) descriptive text of neurons of the target network to weights of neurons 

to be parsed , such as HTML ( hypertext markup language ) , of the evaluation network . 
XML ( extensible markup language ) , or JSON ( JavaScript 4. The RLP system of claim 1 , wherein the processor does 
Object Notation ) ( ii ) assembly code , ( iii ) object code gen- 35 not train the target network . 
erated from source code by a compiler , ( iv ) source code for 5. The RLP system of claim 1 , wherein : 
execution by an interpreter , ( v ) source code for compilation the evaluation network is configured to set the second Q 
and execution by a just - in - time compiler , etc. As examples value based on the sensor data , the object location data , 
only , source code may be written using syntax from lan and the state information ; 
guages including C , C ++ , C # , Objective - C , Swift , Haskell , 40 the target network is configured to set the first Q value 
Go , SQL , R , Lisp , Java® , Fortran , Perl , Pascal , Curl , based on the sensor data , the object location data , and 
OCaml , Javascript , HTML5 ( Hypertext Markup Language the state information ; and 
5th revision ) , Ada , ASP ( Active Server Pages ) , PHP ( PHP : the loss value is determined based on a difference between 
Hypertext Preprocessor ) , Scala , Eiffel , Smalltalk , Erlang , the first Q value and the second Q value . 
Ruby , Flash® , Visual Basic® , Lua , MATLAB , SIMULINK , 45 6. The RLP system of claim 1 , wherein : 
and Python® . the processor is configured to determine the loss value 

based on a discount factor ; and 
What is claimed is : the discount factor indicates a relative importance of a 
1. A reinforcement learning and planning ( RLP ) system most recent reward as compared to a future obtainable 

for a host vehicle , the RLP system comprising : reward . 
a memory configured to store a RLP algorithm , which is 7. The RLP system of claim 1 , further comprising a 

a multi - agent collaborative deep Q network ( DON ) collaboration enabling module configured to ( i ) enable col 
with prioritized experience replay ( PER ) algorithm ; laboration between the host vehicle and the other vehicles , 
and and ( ii ) provide the refined policy and a second set of future 

a plurality of levels including a first level , a second level , 55 coordinate locations to the second level . 
and a third level , wherein 8. The RLP system of claim 7 , wherein the coordinate 
the first level comprises a data processing module location module is configured to provide the updated policy 

configured to provide sensor data , object location and the first set of coordinate locations based on the sensor 
data , and state information of a plurality of vehicles data , the object location data , the state information , and the 
including the host vehicle and multiple other 60 second set of future coordinate locations . 
vehicles , 9. The RLP system of claim 1 , wherein the third level is 

the second level comprises a coordinate location mod- configured to enable collaboration between the host vehicle 
ule configured to , based on the sensor data , the object and the other vehicles based on the sensor data , the object 
location data , the state information , and a refined location data , and the state information . 
policy provided by the third level , generate an 65 10. The RLP system of claim 1 , further comprising a 
updated policy and a first set of future coordinate driver assistance module configured to implement the 
locations to be implemented via the first level , updated policy and future coordinate locations by control 
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ling a plurality of actuators of the host vehicle to follow a by controlling a plurality of actuators of the host vehicle to 
determined path of the updated policy . follow a determined path of the updated policy . 

11. A method of operating a host vehicle , the method 13. The method of claim 11 , wherein the evaluation 
comprising : network has a same structure as the target network , but a 

storing a reinforcement learning and planning ( RLP ) 5 different set of weights . 
algorithm , which is a multi - agent collaborative deep Q 14. The method of claim 11 , further comprising : network ( DON ) with prioritized experience replay during training of the evaluation network , updating ( PER ) algorithm ; weights of the evaluation network ; and at a first level , providing sensor data , object location data , after the predetermined number of events , match weights and state information of a plurality of vehicles includ- 10 of neurons of the target network to weights of neurons ing the host vehicle and multiple other vehicles ; of the evaluation network . at a second level and based on the sensor data , the object 15. The method of claim 11 , further comprising : location data , the state information , and a refined policy provided by a third level , generating an updated policy setting the second Q value via the evaluation network 
and a first set of future coordinate locations to be 15 based on the sensor data , the object location data , and 
implemented via the first level ; the state information ; and 

at the third level , executing instructions of the RLP setting the first Q value via the target network based on the 
sensor data , the object location data , and the state algorithm via a processor ( i ) for collaborative action information , planning between the host vehicle and the other wherein the loss value is determined based on a difference vehicles based on outputs of an evaluation network and 20 

a target network , and ( ii ) to generate the refined policy between the first Q value and the second Q value . 
based on reward values associated with a plurality of 16. The method of claim 11 , further comprising deter 
events , wherein the third level comprises the evaluation mining the loss value based on a discount factor , wherein the 

discount factor indicates a relative importance of a most network and the target network , and wherein the evalu 
ation network and the target network are neural net recent reward as compared to a future obtainable reward . 
works ; 17. The method of claim 11 , further comprising , at the 

second level : determining a loss value ; 
training the evaluation network over the plurality of enabling collaboration between the host vehicle and the 

other vehicles ; events based on the loss value ; 
modifying the refined policy based on reward values after 30 providing the refined policy and a second set of future 

coordinate locations to the second level ; and each of the plurality of events ; and 
after a predetermined number of events , setting a first Q providing the updated policy and the first set of future 

coordinate locations based on the sensor data , the value of the target network equal to a second Q value 
of the evaluation network , wherein the first Q value of object location data , the state information , and the 

second set of future coordinate locations . the target network refers to a state and an action of the 35 18. The method of claim 11 , wherein the third level is host vehicle , and wherein the second Q value of the 
evaluation network refers to the state and the action of configured to based on the sensor data , the object location 
the host vehicle . data , and the state information enable collaboration between 

12. The method of claim 11 , further comprising imple the host vehicle and the other vehicles . 
menting the updated policy and future coordinate locations 
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