Vector Transport Free Riemannian LBFGS for Optimization on Symmetric Positive Definite Matrix Manifolds (Supplementary Material)

Reza Godaz*	REZA.GODAZ@MAIL.UM.AC.IR
Department of Computer Engineering, Ferdowsi Unit	versity of Mashhad, Mashhad, Iran
Benyamin Ghojogh [*] Department of Electrical and Computer Engineering,	BGH0J0GH@UWATERLOO.CA University of Waterloo, ON, Canada
Reshad Hosseini Department of Electrical and Computer Engineering,	RESHAD.HOSSEINI@UT.AC.IR University of Tehran, Tehran, Iran
Reza Monsefi Department of Computer Engineering, Ferdowsi Univ	MONSEFI@UM.AC.IR versity of Mashhad, Mashhad, Iran
Fakhri Karray	KARRAY@UWATERLOO.CA
Mark Crowley	MCROWLEY@UWATERLOO.CA
Department of Electrical and Computer Engineering,	University of Waterloo, ON, Canada

Editors: Vineeth N Balasubramanian and Ivor Tsang

1. Proof for Proposition 5

- Upper bound analysis: The most time consuming part of the RLBFGS algorithm is the recursive function GetDirection(.) defined in Section 2.4. In every call of recursion, Eqs. (1)-(3) are performed. The metric used in Eqs. (1) and (3) takes $\mathcal{O}(n^3)$ and $\mathcal{O}(n^2)$ before and after applying the mappings, respectively (cf. Table 1). This is because matrix inversion takes $\mathcal{O}(n^3)$ time and the matrices are vectorized within trace operator in the algorithm implementation. The vector transport used in Eq. (2) takes $\mathcal{O}(n^3)$ and $\mathcal{O}(1)$ before and after applying the mappings, respectively (cf. Table 1). Recursion in RLBGS is usually done for a constant *m* number of times (see Ref. Ring and Wirth, 2020). Overall, the complexity of recursion is $\mathcal{O}(mn^3)$ and $\mathcal{O}(mn^2)$, for RLBFGS with and without mappings, respectively.

- Lower bound analysis: Computing matrix inversion in the metric before applying our mappings (cf. Table 1) takes $\Omega(n^2 \log n)$ (see article [1] referenced below) while metric takes $\Omega(n^2)$ after the mappings. The vector transport takes $\Omega(n^3)$ and $\Omega(1)$ before and after the mappings, respectively. Overall, the complexity of recursion is $\Omega(mn^3)$ and $\Omega(mn^2)$, for RLBFGS with and without mappings, respectively.

[1] A. Tveit, "On the complexity of matrix inversion," Norwegian University of Science and Technology, Trondheim, Technical Report, 2003.

^{*} The first two authors contributed equally to this work.

- **Tight bound analysis:** As the upper bound and lower bound complexities of the every algorithm are equal, we can conclude that the complexity bound is tight. Therefore, RLBFGS has time complexity $\Theta(mn^3)$ and $\Theta(mn^2)$, with and without our mappings, respectively. This shows that our proposed mappings improve the time of optimization. This time improvement shows off better if computation of gradients in Eq. (6) is not dominant in complexity.

2. Simulations for Larger Sample Size and Dimensionality

Tables 2 and 3, in this Supplementary Material, report the average simulation results for large sample size, i.e., $N = 100n^2$. In these tables, exponential map and Taylor approximation for retraction are used, respectively. We also have reported results for large dimensionality d = 100 in these two tables.

3. Cost Difference Progress for $N = 10n^2$ Sample Size Simulations

The log-scale cost difference for simulations of $N = 10n^2$ are depicted in Figs. 1 and 2 of this Supplementary Material, for K = 2 and K = 5, respectively.

4. Cost Difference Progress for $N = 100n^2$ Sample Size Simulations

The log-scale cost difference for simulations of $N = 10n^2$ are depicted in Figs. 3 and 4 of this Supplementary Material, where exponential map and Taylor approximation for retraction are used, respectively.

Table 1: Comparison of average results over ten runs where retraction with Taylor series expansion is used in algorithms and $K \in \{2, 5\}$, $n \in \{2, 10\}$, $N = 10n^2 \in \{40, 1000\}$. The #iters, conv, iter, diff, and std are short for number of iterations, convergence, iteration, difference, and standard deviation, respectively.

K	n	Separation	Algorithm	#iters	conv. time	time diff. std	iter. time	last cost
		Low	VTF (ISR)	$59.800{\pm}22.553$	$93.135 {\pm} 88.437$	19.280	$1.320{\pm}0.711$	$0.610 {\pm} 0.366$
			VTF (Chol.)	$62.600{\pm}29.079$	106.545 ± 117.633	48.611	$1.355 {\pm} 0.830$	$0.619{\pm}0.382$
			RLBFGS	$59.800{\pm}26.803$	100.424 ± 120.310	-	$1.363 {\pm} 0.787$	$0.610{\pm}0.366$
	2	Mid	VTF (ISR)	$45.800{\pm}16.982$	48.155 ± 38.045	10.833	$0.900{\pm}0.454$	$0.482{\pm}0.497$
			VTF (Chol.)	$47.000{\pm}18.074$	51.529 ± 41.465	11.146	$0.930{\pm}0.483$	$0.482{\pm}0.497$
			RLBFGS	$45.000{\pm}16.330$	48.150 ± 37.285	-	$0.921{\pm}0.458$	$0.482 {\pm} 0.497$
		High	VTF (ISR)	$25.600{\pm}4.142$	$9.816 {\pm} 3.837$	1.380	$0.370 {\pm} 0.093$	$0.270 {\pm} 0.456$
			VTF (Chol.)	$26.300{\pm}4.448$	$10.540 {\pm} 4.190$	1.932	$0.385 {\pm} 0.101$	$0.270 {\pm} 0.456$
2			RLBFGS	$25.500{\pm}4.353$	$10.526 {\pm} 4.819$	_	$0.396 {\pm} 0.113$	$0.270 {\pm} 0.456$
2		Low	VTF (ISR)	$75.800{\pm}25.607$	166.736 ± 137.600	63.108	$1.955{\pm}0.816$	$4.129 {\pm} 0.771$
			VTF (Chol.)	$74.500{\pm}22.629$	$152.074{\pm}107.531$	98.424	$1.855 {\pm} 0.682$	$4.129 {\pm} 0.771$
			RLBFGS	$74.800{\pm}25.442$	172.641 ± 143.198	_	$2.054{\pm}0.834$	$4.129{\pm}0.771$
			VTF (ISR)	50.900 ± 13.956	$64.501{\pm}38.055$	11.794	$1.170{\pm}0.395$	$3.472{\pm}1.154$
	10	Mid	VTF (Chol.)	$52.100{\pm}13.892$	66.775 ± 41.257	7.815	$1.184{\pm}0.410$	$3.472{\pm}1.154$
			RLBFGS	$51.000{\pm}14.063$	$70.132{\pm}46.421$	-	$1.264{\pm}0.450$	$3.472{\pm}1.154$
		High	VTF (ISR)	43.600 ± 5.522	42.763 ± 11.897	12.828	$0.963{\pm}0.168$	$4.353{\pm}1.081$
			VTF (Chol.)	47.400 ± 6.620	50.438 ± 15.187	8.731	$1.041{\pm}0.182$	$4.353{\pm}1.081$
			RLBFGS	44.300 ± 6.464	$47.830{\pm}14.747$	-	$1.055 {\pm} 0.192$	4.353 ± 1.081
		Low	VTF (ISR)	$262.500{\pm}126.532$	4430.577 ± 4455.877	13196.851	$13.849{\pm}6.991$	$0.082{\pm}0.281$
			VTF (Chol.)	$253.500{\pm}124.970$	4086.076 ± 3967.586	10698.273	$13.084{\pm}6.850$	$0.099 {\pm} 0.279$
			RLBFGS	270.700 ± 144.145	5305.821 ± 5495.383	_	$15.560{\pm}8.452$	$0.090 {\pm} 0.282$
		Mid	VTF (ISR)	$110.900{\pm}50.886$	$731.318 {\pm} 769.639$	184.154	$5.445 {\pm} 2.806$	$1.010 {\pm} 0.349$
	2		VTF (Chol.)	$112.200{\pm}60.736$	$792.756 {\pm} 1053.832$	416.142	$5.436 {\pm} 3.358$	$1.010 {\pm} 0.349$
			RLBFGS	$111.900{\pm}55.183$	814.994 ± 975.737	_	5.827 ± 3.289	$1.010{\pm}0.349$
		High	VTF (ISR)	52.000 ± 13.565	116.485 ± 69.535	12.185	$2.071 {\pm} 0.728$	$1.626{\pm}0.431$
			VTF (Chol.)	$51.400{\pm}12.616$	114.032 ± 67.916	19.838	$2.057 {\pm} 0.735$	$1.626{\pm}0.431$
5			RLBFGS	$53.400{\pm}14.081$	139.989 ± 89.213	-	$2.408 {\pm} 0.936$	$1.626 {\pm} 0.431$
0		Low	VTF (ISR)	219.700 ± 57.908	2946.040 ± 1513.372	1239.375	12.579 ± 3.507	$6.643 {\pm} 0.662$
			VTF (Chol.)	226.100 ± 86.010	3272.111 ± 2808.634	2103.162	12.707 ± 5.156	$6.625 {\pm} 0.650$
			RLBFGS	$231.300{\pm}64.484$	3607.215 ± 1947.580	_	$14.516 {\pm} 4.305$	$6.642 {\pm} 0.663$
	10	Mid	VTF (ISR)	87.100 ± 21.502	413.616 ± 223.510	54.437	$4.458{\pm}1.310$	$6.585 {\pm} 0.569$
			VTF (Chol.)	87.200 ± 21.186	$405.484{\pm}214.985$	47.791	4.374 ± 1.262	$6.585 {\pm} 0.569$
			RLBFGS	87.400 ± 20.403	454.434 ± 227.556	_	4.918 ± 1.339	$6.585 {\pm} 0.569$
		High	VTF (ISR)	$60.500{\pm}10.533$	181.113 ± 76.070	16.691	$2.892{\pm}0.649$	$6.827 {\pm} 0.836$
			VTF (Chol.)	$62.700{\pm}11.295$	197.565 ± 93.653	24.531	$3.019{\pm}0.827$	$6.827 {\pm} 0.836$
			RLBFGS	$58.900{\pm}11.040$	187.518 ± 86.254	_	$3.058{\pm}0.746$	$6.827 {\pm} 0.836$

Table 2: Comparison of average results over ten runs where exponential map is used in algorithms and $n \in \{2, 10, 100\}, N = 100n^2 \in \{400, 10000, 1000000\}, K = 2.$

\overline{n}	Separation	Algorithm	#iters	conv. time	time diff. std	iter. time	last cost
2	Low	VTF (ISR)	72.000 ± 22.949	127.902 ± 98.372	31.248	$1.616 {\pm} 0.584$	$0.281{\pm}0.394$
		VTF (Chol.)	$69.800{\pm}23.136$	$116.250 {\pm} 86.811$	23.937	$1.490 {\pm} 0.590$	$0.281{\pm}0.394$
		RLBFGS	$68.900{\pm}24.875$	$123.064{\pm}105.594$	_	$1.561{\pm}0.694$	$0.281{\pm}0.394$
	Mid	VTF (ISR)	$59.400{\pm}16.460$	78.124 ± 53.880	10.139	$1.210{\pm}0.421$	$0.520{\pm}0.392$
		VTF (Chol.)	$54.900{\pm}12.862$	63.241 ± 34.382	31.027	1.082 ± 0.332	$0.516 {\pm} 0.393$
		RLBFGS	$58.400{\pm}17.037$	80.042 ± 62.183	_	$1.240{\pm}0.497$	$0.520{\pm}0.392$
		VTF (ISR)	$23.300{\pm}2.627$	$7.434{\pm}2.288$	0.738	$0.313 {\pm} 0.057$	$0.102{\pm}0.288$
	High	VTF (Chol.)	$22.900{\pm}2.685$	7.273 ± 2.084	0.873	$0.312{\pm}0.052$	$0.102{\pm}0.288$
		RLBFGS	$23.300{\pm}2.497$	7.917 ± 2.135	-	$0.335 {\pm} 0.053$	$0.102{\pm}0.288$
		VTF (ISR)	$63.400{\pm}16.728$	112.682 ± 74.903	17.031	$1.664{\pm}0.489$	$4.364{\pm}1.299$
	Low	VTF (Chol.)	$65.000{\pm}17.994$	117.215 ± 82.258	13.637	$1.670 {\pm} 0.538$	$4.364{\pm}1.299$
		RLBFGS	$64.900{\pm}17.866$	126.987 ± 87.668	_	$1.819{\pm}0.561$	$4.364{\pm}1.299$
		VTF (ISR)	48.200 ± 8.766	58.096 ± 23.089	10.899	$1.164{\pm}0.256$	$4.024{\pm}1.627$
10	Mid	VTF (Chol.)	$49.800{\pm}11.811$	64.021 ± 34.770	6.571	$1.208 {\pm} 0.364$	$4.024{\pm}1.627$
		RLBFGS	$48.400{\pm}10.906$	64.099 ± 32.746	_	$1.251{\pm}0.361$	$4.024{\pm}1.627$
	High	VTF (ISR)	$45.100{\pm}7.385$	49.628 ± 20.550	7.336	1.065 ± 0.243	$3.290{\pm}1.129$
		VTF (Chol.)	$47.800 {\pm} 8.121$	55.217 ± 22.622	6.572	$1.117 {\pm} 0.251$	$3.290{\pm}1.129$
		RLBFGS	$45.200{\pm}7.131$	$52.883 {\pm} 20.627$	-	$1.137 {\pm} 0.236$	$3.290{\pm}1.129$
100	Low	VTF (ISR)	131.900 ± 32.402	54826.327 ± 30454.295	5842.849	$389.761{\pm}121.060$	$63.703{\pm}2.843$
		VTF (Chol.)	$141.200{\pm}36.908$	59082.278±32385.087	3775.919	$392.658 {\pm} 110.916$	$63.703 {\pm} 2.843$
		RLBFGS	$136.300{\pm}36.059$	56627.788 ± 32602.224	_	387.367 ± 119.404	$63.703 {\pm} 2.843$
	Mid	VTF (ISR)	$87.800{\pm}20.225$	23635.623 ± 11743.237	5738.406	259.026 ± 52.061	$61.263 {\pm} 4.734$
		VTF (Chol.)	$95.800{\pm}25.170$	28033.655 ± 16196.321	1410.113	$278.456 {\pm} 64.670$	$61.263 {\pm} 4.734$
		RLBFGS	$94.900{\pm}25.653$	28527.524 ± 17341.755	_	$284.548 {\pm} 69.821$	$61.263 {\pm} 4.734$
	High	VTF (ISR)	97.000 ± 24.240	$29048.836{\pm}12857.812$	3441.882	286.602 ± 63.250	$61.241{\pm}3.991$
		VTF (Chol.)	$105.100{\pm}27.477$	33967.543 ± 15707.841	2014.574	$308.668 {\pm} 70.065$	$61.241{\pm}3.991$
		RLBFGS	$103.200{\pm}26.389$	33101.986 ± 15790.066	-	305.002 ± 74.361	$61.241{\pm}3.991$

Table 3: Comparison of average results over ten runs where retraction with Taylor series expansion is used in algorithms and $n \in \{2, 10, 100\}, N = 100n^2 \in \{400, 100000, 1000000\}, K = 2.$

\overline{n}	Separation	Algorithm	#iters	conv. time	time diff. std	iter. time	last cost
2		VTF (ISR)	$79.800{\pm}49.973$	206.935 ± 343.153	105.106	1.839 ± 1.340	0.403 ± 0.578
	Low	VTF (Chol.)	$72.200{\pm}20.004$	125.636 ± 83.113	334.239	$1.608 {\pm} 0.536$	$0.402{\pm}0.576$
		RLBFGS	$83.900{\pm}51.054$	237.936 ± 364.382	_	$2.064{\pm}1.412$	$0.404{\pm}0.578$
	Mid	VTF (ISR)	$48.100{\pm}12.688$	49.277±30.486	12.185	$0.946 {\pm} 0.334$	0.196 ± 0.436
		VTF (Chol.)	$50.100{\pm}14.271$	$56.329 {\pm} 40.420$	14.674	1.017 ± 0.422	$0.196 {\pm} 0.436$
		RLBFGS	$51.000{\pm}13.622$	61.036 ± 39.550	_	1.099 ± 0.412	$0.196{\pm}0.436$
		VTF (ISR)	25.300 ± 3.945	9.887±3.903	3.565	$0.377 {\pm} 0.101$	0.111 ± 0.261
	High	VTF (Chol.)	$26.500{\pm}4.927$	11.003 ± 5.644	4.938	$0.395 {\pm} 0.124$	$0.111 {\pm} 0.261$
		RLBFGS	$25.100{\pm}4.012$	10.203 ± 4.224	-	$0.392{\pm}0.106$	$0.111 {\pm} 0.261$
		VTF (ISR)	$65.500{\pm}18.435$	123.552 ± 77.898	14.558	$1.747 {\pm} 0.560$	4.164 ± 1.142
	Low	VTF (Chol.)	$66.500{\pm}19.558$	122.281 ± 79.423	19.994	$1.688 {\pm} 0.569$	$4.164{\pm}1.142$
		RLBFGS	$65.200{\pm}18.743$	130.098 ± 84.241	_	$1.835 {\pm} 0.622$	$4.164{\pm}1.142$
		VTF (ISR)	$40.600 {\pm} 5.211$	38.915 ± 12.591	8.862	$0.938 {\pm} 0.177$	4.589 ± 1.278
10	Mid	VTF (Chol.)	$41.000 {\pm} 5.538$	$38.732{\pm}12.699$	9.319	0.924 ± 0.171	$4.589{\pm}1.278$
		RLBFGS	$40.400{\pm}6.186$	$41.513 {\pm} 15.303$	_	$0.998 {\pm} 0.213$	$4.589{\pm}1.278$
	High	VTF (ISR)	44.400 ± 6.310	46.957 ± 15.325	11.008	$1.032{\pm}0.198$	3.786 ± 1.113
		VTF (Chol.)	$46.000 {\pm} 6.616$	$50.393{\pm}15.950$	12.688	$1.070 {\pm} 0.195$	$3.786{\pm}1.113$
		RLBFGS	$44.200{\pm}7.099$	50.707 ± 18.070	-	$1.116 {\pm} 0.222$	$3.786{\pm}1.113$
100	Low	VTF (ISR)	$118.500{\pm}11.404$	39986.299 ± 6719.992	2227.745	$335.341{\pm}26.657$	62.241 ± 5.708
		VTF (Chol.)	$124.400{\pm}11.157$	42882.658 ± 7219.289	3669.708	342.538 ± 28.830	62.241 ± 5.708
		RLBFGS	$121.300{\pm}11.235$	41171.059 ± 7987.985	_	336.547 ± 36.783	$62.241 {\pm} 5.708$
	Mid	VTF (ISR)	$103.800{\pm}24.679$	$32533.037{\pm}16124.089$	3314.944	297.268 ± 76.267	60.256 ± 3.662
		VTF (Chol.)	$111.900{\pm}28.781$	37328.925 ± 18924.066	2916.610	314.512 ± 82.724	60.256 ± 3.662
		RLBFGS	$111.300{\pm}27.941$	36926.995 ± 17705.262	_	314.564 ± 76.642	60.256 ± 3.662
	High	VTF (ISR)	$96.300{\pm}25.880$	$28818.656{\pm}14923.845$	1492.788	283.824 ± 67.267	60.601 ± 4.436
		VTF (Chol.)	$103.900{\pm}26.126$	33669.987±16494.757	3368.579	308.353 ± 73.281	60.601 ± 4.436
		RLBFGS	$102.800{\pm}25.258$	31630.478 ± 15755.934	_	292.771 ± 68.396	60.601 ± 4.436

Figure 1: Comparison of the proposed VTF-RLBFGS algorithm (using ISR and Cholesky) with RLBFGS in their cost differences. In these experiments, we had K = 2.

Figure 2: Comparison of the proposed VTF-RLBFGS algorithm (using ISR and Cholesky) with RLBFGS in their cost differences. In these experiments, we had K = 5.

Figure 3: Comparison of the proposed VTF-RLBFGS algorithm (using ISR and Cholesky) with RLBFGS in their cost differences. In these experiments, exponential map is used in optimization procedure and we had K = 2.

Figure 4: Comparison of the proposed VTF-RLBFGS algorithm (using ISR and Cholesky) with RLBFGS in their cost differences. In these experiments, Taylor series expansion is used for approximation of retraction operator and we had K = 2.