
The 34th Canadian Conference on Artificial Intelligence
DOI: 0

Active Measure Reinforcement Learning for Observation Cost
Minimization

Colin Bellinger†,*, Rory Coles‡, Mark Crowley�, Isaac Tamblyn†,**
† National Research Council of Canada

Ottawa, Canada
‡ University of Victoria, Victoria, Canada
� University of Waterloo, Waterloo, Canada

Vector Institute for Artificial Intelligence, Toronto, Canada

*colin.bellinger@nrc-cnrc.gc.ca ** isaac.tamblyn@nrc-cnrc.gc.ca

Abstract
Markov Decision Processes (MDP) with explicit measurement cost are a class of en-

vironments in which the agent learns to maximize the costed return. Here, we define
the costed return as the discounted sum of rewards minus the sum of the explicit cost
of measuring the next state. The RL agent can freely explore the relationship between
actions and rewards but is charged each time it measures the next state. Thus, an op-
timal agent must learn a policy without making a large number of measurements. We
propose the active measure RL framework (Amrl) as a solution to this novel class of
problem, and contrast it with standard reinforcement learning under full observability
and planning under partially observability. We demonstrate that Amrl-Q agents learn
to shift from a reliance on costly measurements to exploiting a learned transition model
in order to reduce the number of real-world measurements and achieve a higher costed
return. Our results demonstrate the superiority of Amrl-Q over standard RL methods,
Q-learning and Dyna-Q, and POMCP for planning under a POMDP in environments
with explicit measurement costs.

Keywords: Reinforcement Learning, Active Learning, Partial Observability, Sample
Efficiency

This article is c© 2021 by author(s) as listed above. The article is licensed under a Creative Commons
Attribution (CC BY 4.0) International license (https://creativecommons.org/licenses/by/4.0/legalcode),
except where otherwise indicated with respect to particular material included in the article. The article
should be attributed to the author(s) identified above.

1. Introduction

In sequential decision making, an agent learns a policy that maps states to actions with
the objective of maximizing the discounted long-term reward. Policy learning is achieved
via online interactions with the environment. Given the current state, the agent selects
an action, receives a numeric reward and the next state from the environment, and then
updates its policy.

We present a sub-class of this problem that is characterized by explicit, and potentially
heterogeneous, state measurement costs. Specifically, at every time t there is an explicit
cost associated with knowing the next state. This cost lowers the reward received from the
environment. The agent, however, has the option to forgo the measurement cost at any
time by not measuring the state of the environment. To achieve this, we utilize the concept
of action pairs. At each time t, the agent selects an action pair that indicates which action
to take (e.g., move left) and whether or not to measure the next state of the environment.
Problems of this nature occur in drug design and quantum control, for example, where
at each time step the actor can choose to pay (with time and resources) for an accurate
measurement of the current state, or forgo the cost and choose the next action according to
its intuition or learned model.

To solve this sub-class of sequential decision making, we propose the Active Measure
Reinforcement Learning (Amrl) framework. Similar to model-based RL [1–3], Amrl
agents learn a policy π and a dynamics model M in parallel via interactions with the
environment. In Amrl, the policy maps states to actions pairs, π : s→ ap, and the dynamics

2

model is used to estimate the next state given the current state and an action,M : s, a→ s′.
Whereas model-based RL utilizes the model to reduce the training time or the number of
interactions with the environment, Amrl exploits its model to reduce the measurement costs.
To this end, model-based RL agents update the policy, in part, based on state and reward
trajectories simulated by the model. Alternatively, Amrl interacts with the environment
at each time step. The true reward signal is always used and, when appropriate, model
estimates of the next state are utilized in place of costly real-world measurements of the
next state of the environment.

By choosing between measuring the next state of the environment at a cost or estimating
it, Amrl utilizes an active learning strategy. Active learning is typically applied to supervised
machine learning problems with the aim of reducing the cost of expensive labelling of training
data [4]. The learner selects a limited number of samples from an unlabelled pool that
are expected to most improve the classifier to be labelled by an oracle. Amrl views the
environment as an oracle that can return the true state at a cost. During learning, Amrl
actively shifts from initially paying to measure the next state to estimating the next state
when it has more experience. This enables the agent to learn a good policy and dynamics
model, and to reduce its costs over time.

Due to the agent shifting between measurements of the true state of the environment and
the use of estimates, Amrl resides in the grey area between fully observable Markov Decision
Processes (MDPs) and Partially Observable Markov Decision Processes (POMDPs). At the
extremes, the agent can opt to operate exclusively in a fully observable world by paying
for a state measurement at each time step or rely entirely on its learned model. The
former enables standard model-free RL methods to be applied [5]. This ensures a good
policy, but will not reach the optimal costed return. The latter requires model-based RL
[1–3] or classical planning under POMDP methods [6] to be used, which require more state
measurements for model learning and computationally complex planning. The problem
can be solved more efficiently and with a higher return via Amrl, which dynamically shifts
between measurements and estimates based on its past experience.

We analyze the suitability of POMDP solutions and demonstrate an implementation of
Amrl using Q-learning and a statistics-based dynamics model (Amrl-Q)1. We compare Amrl-
Q to Q-learning and Dyna-Q on four benchmark learning environments, including a new
chemistry motivated environment; specifically, the junior scientist environment. The results
show that Amrl-Q achieves a higher costed return than Q-learning, Dyna-Q and POMCP,
whilst learning at an equivalent rate to Q-learning and Dyna-Q.

1.1. Contributions

The main contributions of this work are:
• Formalization of MDPs with explicit observation costs
• Definition of the Active Measure RL framework (Amrl)
• Presentation of an initial implementation of the framework, Amrl-Q, based on Q-

learning
• Analysis of Amrl-Q on novel and benchmark RL environments
• Demonstration Amrl-Q’s advantage over Q-learning, Dyna-Q and POMCP.

2. Related Work

Previous work on active reinforcement learning has focused on ameliorating the problem
of defining a complete reward function over the state-action space [7–9]. In addition to
selecting an action at each time step, the agents in these proposals actively decide to request

1See https://github.com/cbellinger27/CanAI2021_AMRL for code related to this paper.

https://github.com/cbellinger27/CanAI2021_AMRL

3

a human expert to provide the reward for the state-action pair. To minimize reliance on
human experts, there is a cost assigned to requesting a human-specified reward. The agent
aims to minimize this cost whilst maximizing the discounted sum of rewards. Alternatively,
Amrl is designed to lower the state measurement costs by actively shifting between measuring
of the true state and estimating the state based on its learned dynamics model.

MDPs with explicit measurement costs described herein are partially related to Con-
strained Markov decision processes (CMDPs) [10]. Specifically, both problems have multiple
objectives and charge costs to different actions. CMDPs, however, have explicit constraints
and are generally solved via linear programming, whereas Amrl learns online and does not
have explicit constraints. Active perception also relates to our work in that the agent takes
actions to increase the information available [11]. The key distinction is that active adaptive
perception applied to RL employs self-modification and self-evaluation, such as moving to
a new location, to improve its perception [12]. Moreover, the active adaptive perception
agent receives observations at each time step, whereas in the proposed class of problem, the
agent has the choice to measure the true state at a cost or use an estimate at no cost.

The learning of the state transition dynamics of the Amrl framework is similar to the
techniques employed in model-based RL [13–15] and solutions for POMDPs [16]. Model-
based RL aims to improve learning efficiency by reducing the number of real-world training
steps needed to obtain an optimal policy, whereas our work is focused on the cost of mea-
suring the true state rather than the number of interactions with the environment. Amrl
agents aim to minimize the associated measurement costs. State estimators are applied in
POMDPs to reduce uncertainty that arises from partial observability. In contrast, in Amrl,
the agent is learning an optimal policy under an MDP with observation costs. The agent
chooses between paying the cost to measure the true state of the environment st or estimat-
ing it as ŝt. Thus, in Amrl, the state estimator is primarily a mechanism to increase the
costed return, rather than manage partial observability.

3. Preliminaries

We define Amrl environments as a tuple: (S,A, P, S′, R, C, γ). These are the standard
components of an MDP, where S is the state-space, A is the action-space, P (s′|s, a) is the
state transition probabilities, R(s, a) is the reward function, and γ ∈ [0, 1] is a discount
factor. P and R are not known by the agent. C(m) returns the cost of measuring the next
state, where m = 1 indicates measure, and m = 0 indicates do not measure.

C(m) =

{
c > 0, if m = 1

0, otherwise.
(3.1)

This cost is subtracted from the reward return from the environment.
At each time step t the agent selects an action pair. In Amrl, the action pair ap = 〈at,mt〉

consists of an atomic process at ∈ A (e.g., move left) and a measurement indicator mt ∈
[0, 1]. If mt = 1, the process at is applied to the environment, and the environment returns
the reward minus the cost, along with the next state (rt+1 − ct+1, st+1 = Env(at,mt)).
Here, st+1 results from the underlying, unknown transition dynamics P (st, at). For mt = 0,
the process at is applied to the environment, but the environment only returns the reward
rt+1 = Env(at,mt). In this case, the Amrl agent estimates the next state ŝt+1 ∼M(st, at),
and selects its next action pair 〈at+1,mt+1〉 based on this estimate, ŝt+1. The agent starts
each episode with a true measurement of the environment’s current state, s0, and proceeds
to sequentially select action pairs, apt, that determine the process to be applied and whether
to measure st+1 or estimate it. Importantly, the reward emitted from the environment is
always a function of the process at and the true state of the environment st irrespective of
whether the agent selected at based on st or an estimate ŝt.

4

In this work, we focus on episodic environments with discrete states, S = {1, ..., |S|}
and action sets A = {1, ..., |A|}, and stationary state-transition dynamics. In an MDP
with measurement costs, the objective is to select a sequence of action pairs 〈at,mt〉 that
maximize the costed return, which is defined as the discounted sum of rewards minus the

sum of measurement costs: v(s) = E

[∑∞
t=0 γ

t
(
R(st, at) − C(mt)

)
| s = s0

]
. In Amrl, a

policy, π, maps states S and action pairs A×M to a probability π : S × (A×M)→ [0, 1],
such that π(s, 〈at,mt〉) is the probability of selecting action pair (a,m) ∈ A ×M while in
state s ∈ S. The value function associated with policy π is:

vπ(s) = E

[∞∑
t=0

γt
(
R(st, apt))− C(apt)

)
| s = s0

]
, (3.2)

where the actions are selected according to π. Since action pairs (A×M) can be thought
of as a higher-level class of action, the standard RL theorems hold, provided the agent learns
an accurate model. Thus, there is exists at least one policy π∗ such that V π(s) ≤ V π

∗
(s),

where π∗ is an optimal policy and V ∗ is the corresponding value function.

4. Amrl-Q

Here we propose an initial implementation of the Amrl framework for a tabular learning
environment and leave continuous state and action spaces for future work.

4.1. Overview

The Amrl-Q framework learns a value function Q, and a dynamics model M(St+1|St, at)
in parallel. LearningM and Q is essential to the active learning-based solution which enables
the agent to reduce the total number of times it requests a true measurement. The theory
behind this can be demonstrated with the pedagogical Markov chain.

Consider a five-state linear Markov chain with states named in order from 0 to 4 and two
actions (left, right). This forms an episodic RL problem where the agent starts in state 0
and receives a reward of one upon entering the absorbing state, state 4, and 0 elsewhere. For
temporal difference (TD) learning methods, such as Q-learning, applied to episodic problems
such as this, the value of states and actions is refined over multiple episodes of training from
the state closest to the absorbing state back to the start state.

If we assume a Q-table initialized to all zeros, after one episode of training is complete,
only Q(s = 3, a = right) will have a value greater than zero; if we assume batch updating,
after the second episode is complete, states 2 and 3 will have values greater than zero, and
so on. In general, for an n-state chain of this nature and batch updating, the agent will
require n− 1 episodes of training to start to improve the Q-values associated with the start
state, state 0.

In standard MDP solutions, the number of times the agent visits each state per episode
indicates how many true measurements of the environment it will make. We can estimate
this by calculating the fundamental matrix N of the absorbing Markov chain P . The
fundamental matrix is defined as N = (I−Q)−1, where I is the identify matrix and Q is the
t× t matrix representing the transient states in P . Based on this, the expected number of
state visits before absorbing for an agent starting in state 0 and following a random policy is
8,6,4 and 2, respectively. Thus, in the first four episodes of training, the Q-agent is expected
to take 46 measurements of the environment.

If we consider the dynamics model M learned by Amrl, according to the calculations
above, in the first episode of training the agent is expected to have tried both actions in
each state 4, 3, 2 and 1 times, respectively. For a deterministic P , the agent need only try
each state-action pair once to have an accurate M . Thus, an Amrl agent acting optimally

5

will switch from actively measuring the next state to estimating it with M after the first
episode of training. In this way, Amrl can improve measurement efficiency well beyond
what can be achieved by standard RL methods and model-based RL (for deterministic
environments at least.)

Algorithm 1 Amrl-Q Algorithm.
Parameters: step size α ∈ (0, 1], optimistic initializer β > 0, small ε > 0
Algorithm:

1: Optimistically initialize Q-table of size |S| × |A| × 2 with β
2: Initialize |A| state-transition statistic table Ma of size |S| × |S| to zeros.
3: while more episodes of training do
4: Get first state s0 from the environment
5: while not done episode do
6: Select action pair (a,m) with ε greedy policy from Q table for state s
7: Apply action a to environment
8: if measure m = 1 then
9: Measure next state s′ in environment

10: Update state transition model for action a Ma[s, s
′] += 1

11: else
12: Sample next state s′ ∼Ma(s)

13: Get reward r = R(s, a) and cost c = C(m) from environment
14: Update Q table for state s with tuple (s, a, r − c, s′) using Eq. (4.1)
15: Set s← s′

4.2. Algorithm

The Amrl-Q algorithm maintains |A| count-based statistics tables of size |S| × |S| (i.e.,
one dynamics model, Ma, per action.) The agent maintains an |S| × (|A| · 2) dimensional
Q-table, where |A| · 2 is the number of action pairs. An environment with 2 atomic actions,
for example, has 4 possible action pairs in each state. The Q-table is updated as:

Q(st, at)← Q(st, at) + α

[
(rt+1 − ct+1) γmax

a
Q(st+1, a)−Q(st, at)

]
(4.1)

The agent employs an ε-greedy strategy to pick action pairs from the Q-table. If the
action pair at time t includes mt = 1, then the agent chooses to pay the cost c of measuring
the next state from the environment. When the agent chooses to measure the true state, it
updates Ma(st, st+1) for the corresponding action a = at. Otherwise, the agent estimates
the next state from its model as st+1 ∼ Ma(st, at) and proceeds to make decision at time
t+ 1 using the state estimate.

Much like a human learning a new task, the first few times an agent enters a state it
must measure the result of taking an action. We define the β parameter that serves to
optimistically initialize columns of the Q-table involving action pairs with m = 12. In
general, optimistic initialization is used to promote exploration in the earlier episodes of
training [17]. Here, it is used to encode prior knowledge that the agent ought to initially pay
for true state measurements and shift to estimating after it has gained enough experience.
Larger β values cause the agent to gain more experience before shifting to use its dynamics
model. This is necessary in environments with more stochasticity. The algorithm is outlined
in Algorithm 1.

2Q-values related to non-measurements, m = 0, are initialized to zero.

6

5. Experimental Setup

5.1. RL Environments

This section outlines the environments used to evaluate Amrl-Q. In each case, the environ-
ments are episodic and involve discrete states and actions. We consider both deterministic
and stochastic state transition dynamics, and a wide range of measurement costs and reward
structures.

Chain environments: We evaluate an 11-state, standard chain environment and a 20-
state even-odd chain environment. In both cases, the episodes start in s0 and they conclude
in goal states s10 and s19 respectively. Upon entering goal state, the agent receives a reward
of r = 1 in the standard chain and r = 300 in the even-odd chain. In all other states, the
agent receives a reward of r = −0.01 in the standard chain and r = −1 in the even-odd
chain. The agent selects from action pairs: (move left, don’t measure) , (move left, measure),
(move right, don’t measure), (move right, measure). In the standard chain, measuring the
next state has a cost of c = 0.05. Alternatively, we analyze the impact of measurement costs
between 0.1 and 25 in the even-odd chain. In odd numbered states of the even-odd chain, the
left and right actions are reversed to move the agent in the opposite direction. In general,
state transitions include Gaussian additive noise: st+1 ∼ P (st+1|st, at) + round(N(σ)),
where σ determines the extent of stochaticity.

Frozen Lake 8×8 environment : This is a modified version of the openAI gym environ-
ment by the same name. In this version, the agent learns to navigate from a start location
to a goal on either a slippery, which can cause the agent in move in unintended directions,
or not slippery, 2-dimensional grid with holes. Each episode ends when the agent reaches
the goal or falls through a hole. The agent receives a reward of r = 1 at the goal, r = 0
otherwise. The agent pays a cost of c = 0.1 for measuring the state of the environment.
The action-space consists of actions pairs of move (move left, move right, move up, move
down) and measure (0/1).

Taxi environment : This is a modified version of the openAI gym environment by the
same name. The agent learns to navigate a 2-dimensional city grid world to pick up and
drop off passengers at the appropriate location [18]. The agent receives a reward r = 20
for dropping off at the correct location, r = −10 for illegal pickup or drop-off and r = −1
at each time step. The agent is charged a cost of c = 0.1 for measuring the state of the
environment. The action-space pairs of (move left, move right, move up, move down, pickup,
drop-off) and measure (0/1).

Junior Scientist environment : This environment emulates a student learning to
manipulate an energy source to produce a desired state change in a target material. Specif-
ically, the agent starts with a sealed container of water composed of an initial h0 percent
ice, l0 percent water and g0 percent gas (h0 + l0 + g0 = 1). The agent learns to sequen-
tially and incrementally adjust a heat source in order to change the ratio of ice, liquid, gas
from (h0, l0, g0) to a goal ratio (h, l, g). The episode ends when the agent declares that
it has reached the goal and it is correctly in the goal state. The action-space includes
A = {decrease, increase, done}, where decrease and increase are fixed incremental adjust-
ments in the energy source. The agent receives a reward of r = 1 when it reaches the goal
and it correctly declares that it is done, and receives a reward of r = −0.05 at each time
step. The agent is charged c = 0.01 for measuring the state of the environment. Measuring
the state results in the environment returning the cumulative energy which has been added
or removed from the system.

POMDP chain environment : This is a replica to the even-odd chain environment
described above adopted for POMDP planning. In addition to states (S ∈ {0..19}), it has
an observation space O ∈ S∪{−1}. The agent select from the action pairs described above.
As is standard in POMDPs, the agent receives an observation at ot at each times step.

7

When the the agent selects action pairs with m = 1, the observation is equivalent to the
true state, ot+1 ← st+1. When the agent does not measure, m = 0, ot+1 = −1.

Figure 1. Left: Performance of Amrl-Q, DYNA-Q and Q-learning on the even-odd chain
environment with deterministic state transitions (N(σ = 0)). The left plot shows mean
number of state measurements per episode, and the right plot presents the mean costed
reward. The red lines indicate that Amrl-Q achieves a higher costed reward and take
fewer measurements on this environment.

5.2. Algorithms for Comparison

Because this work focuses on a new sub-class of problem, there are no clear direct com-
petitors for comparison. The closest option is fully observable RL methods that pay the
measurement cost at each time step. We analyze Q-learning [19] and Dyna-Q [1]. Dyna-Q
particularly comparable because it learns a model of the environment and exploits it to im-
prove sample efficiency. Alternatively, if we assume the availability of a model for planning,
we can convert the problem to a POMDP. We consider this to be less desirable due to the
need for a model and the complexity of planning under a POMDP. In addition, we compare
Amrl-Q to Partially Observable Monte-Carlo Planning (POMCP) [6] in a POMDP setup.

5.3. Evaluation Process

We evaluate each algorithm based on the costed reward, number of steps and measure-
ments per episode. The results show the mean and standard deviation calculated over 20
random trials. For each RL algorithm in our evaluation, we utilize a discount factor of
γ = 0.9 and ε-greedy exploration ε = 0.1. The Q-tables for both Q-learning and Dyna-Q
are initialized to zeros, and Dyna-Q utilizes 5 planning steps after each real step. The β
value in Amrl-Q is typically 0.1, however, we also explore the impact of higher optimistic
initialization. For POMCP, we utilize random roll-outs, set the exploration constant to 200
and maximum depth to 5.

6. Results

6.1. Comparison with RL Methods

The mean performance of each agent on the even-odd chain environment with determin-
istic state transitions (N(σ = 0)) is shown in Figure 1. All three methods learn a policy
that takes a similar number of steps to the goal (left plot). The learning curves show that
Dyna-Q (blue line) learns slightly faster than Amrl-Q (red line) and significantly faster
than Q-learning (green line). Amrl-Q quickly reduces it measurements and achieves a much
higher costed return as a result. The number of steps demonstrates that whilst our method

8

Figure 2. Comparison of mean costed rewards for Amrl-Q with Dyna-Q and Q-learning
on frozen lake not slippery, frozen lake slipper, taxi and junior scientist. Amrl-Q achieves
an equivalent or higher costed reward than the alternative methods.

learning an equally good policy at a similar rate, only Amrl-Q can increase the costed reward
by actively shifting to estimate the next state.

Agent Frozen Lake Taxi

Random 31.95 31.95
Q-learning 15.45 14.83
Dyna-Q 13.99 14.67
Amrl-Q 10.5 12.13

Table 1. The mean number of measurements made by
each algorithm per episode of training on frozen lake
not slippery and taxi environments. In both environ-
ments, Amrl-Q requires fewer measurements than the
alternative RL methods.

Figure 2 shows the mean of the costed re-
turn for each algorithm on the Frozen Lake
(slippery, and not slipper), Taxi and Ju-
nior Scientist environments. Amrl-Q has a
clear advantage in terms of the mean costed
reward on Frozen Lake slippery and not
slippery, and Junior Scientist. This reem-
phasized in Table 1, which summarizes the
mean number of measurements made by
each algorithm.

Amrl-Q learns faster than Q-learning
and slightly slower than Dyna-Q on these
environments. Dyna-Q has a slight advantage in terms of learning rate due to its use of
model-based planning. Because Amrl is also a model-based method, Dyna-style planning
can be integrated into it to further improve its convergence rate.

On Frozen Lake slippery, Amrl-Q requires a larger optimistic measure initialization (el-
evated from β = 0.1 to β = 2.5) to enable the agent to collect accurate statistics about
the stochastic state transitions. We explore the relationship between β and stochastic tran-
sitions in next section. In the Taxi environment, Amrl-Q only acquires a slightly higher
mean costed reward than the alternative methods after 2,500 episodes. This is due to the
complexity of the environment, low measurement cost c = 0.1 and relatively large rewards,
r = 10. As we demonstrate in the subsequent section, the relative size of cost and reward
strongly influence the benefit of Amrl-Q.

9

6.2. Comparison with POMDP Planning

As an additional angle of comparison, we implemented a POMDP version of the 20-state
active measure chain problem to compare POMCP with Amrl-Q3. Although Amrl-Q learned
an optimal policy, POMCP was unable to effectively plan in this setting. This is irrespective
of the fact that POMCP had access to the true model of the environment. Unlike Amrl,
which actively shifted from paying for measurements to reliance on its model, POMCP my-
opically opted to save the cost by never measuring the true state. This resulted in the agent
moving randomly in the environment. After 100 episodes of training, Amrl-Q received an
average costed return of 263 and took 20.8 steps to the goal. Alternatively, POMCP achieved
an average return of -268.69 and took 250 steps on average. Further experimentation re-
vealed that, in order for POMCP to accurately plan, it had to be incentivised to measure
the state by assigning negative measurement cost. This completely voids the purpose of the
experiments.

Figure 3. Two-dimensional histograms comparing of the number of state visits and mea-
surements made by Q-learning versus Amrl-Q on the Chain environment. Amrl-Q visits
the states with a similar frequency as Q-learning but makes significantly fewer measure-
ments.

6.3. Amrl-Q Analysis

Active Measurements: Figure 3 contains four 2-dimensional histograms. These depict
the number of visits to each state (plots 1 and 2) and the number of measurements in each
state (plots 3 and 4)4 as a function of episodes of training. The x-axis specifies the state in
the standard chain and the y-axis indicates the number of episodes of training completed.
The darker orange cells indicate more visits / measurements, whilst the lighter colouring
indicates a low number of visits. This highlights that Q-learning and Amrl-Q follow similar
patterns in terms of the number of visits to each state across episodes of training. The
state measurement distribution plots, however, emphasize that after just a few episodes of
training, Amrl-Q shifts to estimated the next state. The max state measurement value for
Amrl-Q (rightmost plot) is 6, in comparison to 16 for Q-Learning. In fewer than 30 episodes
of training, the Amrl-Q is able to replace all measurements with its own estimate
Amrl-Q Model Accuracy : Figure 4 displays an analysis of the relationship between
performance, β-value in Amrl-Q and the amount of stochasticity in the even-odd chain
environment. The rows of the figure show mean costed reward, cumulative number of
observations made by the agent and the accuracy of Amrl-Q’s model as a function of episodes

3This was implemented with the pomdp_py framework [20].
4Q-learning measures the state on each visit, therefore, plots 1 and 3 are the same.

10

Figure 4. Relationship between stochastic state transition dynamics (N(σ)) and mean
costed reward (top row), cumulative sum of observations (middle row) and model accu-
racy (bottom row) for Amrl-Q with β-values 0.01, 2 and 4.

of training. Each line in the plots specificies the amount of Gaussian noise in the state
transitions dynamics (N(σ = 0), N(σ = 0.2), N(σ = 0.4)).

The results in the bottom row of Figure 4 demonstrate that for moderate levels of
stochaticity (N(σ = 0), N(σ = 0.2)), the agent’s model quickly achieves prediction accu-
racy near 0.9 with β = 0.01. When the environment has more stochasticity in the transition
dynamics (N(σ = 0.4)), setting the β-value too low (β = 0.01) causes model accuracy to
start of low and take more time to improve. This has short- and medium-term implications
of the learned policy and costed return.

Setting the β-value too high causes the agent to pay for more measurements than needed
before shifting to use its model. We can see this by comparing the first and third cumulative
sum of observations plots in the middle row. With β = 4 and N(σ = 0) or N(σ = 0.2),
the agent has a much higher cumulative sum of observations, and lower than optimal costed
return. Alternatively, these results also show that poor accuracy in the model causes the
agent to make more active measurements per episode. Comparing the cumulative sum of
observations for β = 0.01 and N(σ = 0.4) to β = 4 and N(σ = 0.4), the former makes
significantly more measurements per episode. This is irrespective of the fact that latter
is parameterized to take more measurements. This results from the fact that the agent
is relying on an inaccurate model causing it to take more steps to get the to goal, and
measurement more per episode.

Nonetheless, the results suggest that the model performance is robust to a wide range
of β settings. For low stochasticity (N(σ = 0), N(σ = 0.2)), the Amrl-Q model performs
consistently well with β = 0.01 and β = 2. Model performance is only slightly worse
β = 0.01 on N(σ = 0.2) than with β = 2. Alternatively, for N(σ = 0.4), model performance
with β = 2 is only slightly less than with β = 4. Thus, although performance is sensitive to
β, good performance can be achieve with a wide range settings

11

Figure 5. Relationship between the β parameter in Amrl and the amount of stochasticity
in the state transition dynamics. The figures show the mean performance after 50-
75, 150-75, and 675-700 episodes of training. A low β-value in environments with low
stochasticity enables efficient policy learning. Large β-value perform better in the short-
term when stochasticity is high. In the long-term, the costed returns of similar for low
and high β-value.

Relationship Between β and Stochasticity : Figure 5 plots the mean costed reward
acquired by Amrl-Q with β-values of 0.01,1,4 and 8, versus the degree of stochasticity
in the transition dynamics in the even-odd chain environment. The plots report the mean
costed rewards averaged between 25-50, 150-175 and 675-700 episodes of training. The plots
demonstrate that a low β-value enables the agent to quickly get a higher costed reward
when the stochasticity is low to moderate. Thus, in environments with low to moderate
stochasticities, a low β-value will enable the agent to quickly learn a good policy.

For higher levels of stochasticity (N(σ > 0.2)), however, an agent with a low β-value
does poorly relative to those with higher β-values in the early episodes of training. Inter-
estingly, the third plot demonstrates that in the even-odd chain environments with higher
stochasticities, the agents with low β-values (0.01 and 1) recover the different in the costed
reward in the later episodes of training. Once again, this suggests a degree of robustness to
the setting of β.

Figure 6. Mean costed reward for Amrl-Q, Dyna-Q and Q-learning on the even-odd
chain with N(σ = 0) and measurement costs, c, equal to 5 (left), 10, (middle) and 25
(right). Amrl-Q’s relative advantage grows with increasing measurement costs.

Measurement Costs: Figure 6 depicts the mean costed return for Amrl-Q, Dyna-Q and
Q-learning on the even-odd chain with N(σ = 0) and measurement costs, c, equal to 5
(left), 10, (middle) and 25 (right). At the lower extreme of c = 0 (not shown here), each
method converges to the same mean costed reward. As demonstrated in Figure 6, and our
previous results, Amrl-Q has an advantage in terms of the costed reward when c > 0, and
this advantage grows with c.

12

7. Conclusion

We introduced a sequential decision-making framework, Amrl, in which the agent se-
lects an action and whether or not to measure the next state at a cost at each time step.
We formulate our solution in terms of active learning, and empirically show that Amrl-Q
learns to shift from relying on costly measurements to using its learned dynamics to in-
crease the costed reward. Our results demonstrate the superiority of Amrl-Q over standard
RL methods, Q-learning and Dyna-Q, POMCP for planning under a POMDP. This has
the potential to expand the applicability of RL to important applications in operational
planning, scientific discovery, and medical treatments. To achieve this, additional research
is required to develop Amrl methods for continuous state and action environments, and
function approximation methods, such as deep learning.

References

[1] R. S. Sutton. “Integrated architectures for learning, planning, and reacting based on ap-
proximating dynamic programming”. In: Machine learning proceedings 1990. Elsevier, 1990,
pp. 216–224.

[2] S. Gu et al. “Continuous deep q-learning with model-based acceleration”. In: International
Conference on Machine Learning. PMLR. 2016, pp. 2829–2838.

[3] I. Clavera et al. “Model-based reinforcement learning via meta-policy optimization”. In: Con-
ference on Robot Learning. PMLR. 2018, pp. 617–629.

[4] B. Settles. “Active learning”. In: Synthesis Lectures on Artificial Intelligence and Machine
Learning (2012), pp. 1–114.

[5] V. Mnih et al. “Human-level control through deep reinforcement learning”. In: Nature 518.7540
(2015), p. 529.

[6] D. Silver and J. Veness. “Monte-Carlo planning in large POMDPs”. In: Advances in neural
information processing systems. 2010, pp. 2164–2172.

[7] R. Akrour, M. Schoenauer, and M. Sebag. “April: Active preference learning-based reinforce-
ment learning”. In: Joint European Conference on Machine Learning and Knowledge Discovery
in Databases. Springer. 2012, pp. 116–131.

[8] D. Krueger et al. “Active reinforcement learning: Observing rewards at a cost”. In: Future of
Interactive Learning Machines, NIPS Workshop. 2016.

[9] S. Schulze and O. Evans. “Active reinforcement learning with monte-carlo tree search”. In:
arXiv preprint arXiv:1803.04926 (2018).

[10] E. Altman. Constrained Markov decision processes. Vol. 7. CRC Press, 1999.
[11] J. J. Gibson. “The senses considered as perceptual systems.” In: Houghton Mifflin, 1966.
[12] D. Bossens, N. C. Townsend, and A. Sobey. “Learning to learn with active adaptive percep-

tion”. In: Neural Networks 115 (2019), pp. 30–49.
[13] M. Deisenroth and C. E. Rasmussen. “PILCO: A model-based and data-efficient approach

to policy search”. In: Proceedings of the 28th International Conference on machine learning
(ICML-11). 2011, pp. 465–472.

[14] V. Kumar, E. Todorov, and S. Levine. “Optimal control with learned local models: Appli-
cation to dexterous manipulation”. In: 2016 IEEE International Conference on Robotics and
Automation (ICRA). IEEE. 2016, pp. 378–383.

[15] Y. Gal, R. McAllister, and C. E. Rasmussen. “Improving PILCO with Bayesian neural network
dynamics models”. In: Data-Efficient Machine Learning workshop, ICML. Vol. 4. 2016, p. 34.

[16] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. “Planning and acting in partially
observable stochastic domains”. In: Artificial intelligence 101.1-2 (1998), pp. 99–134.

[17] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT press, 2018.
[18] T. G. Dietterich. “Hierarchical reinforcement learning with the MAXQ value function decom-

position”. In: Journal of artificial intelligence research 13 (2000), pp. 227–303.
[19] C. J. Watkins and P. Dayan. “Q-learning”. In: Machine learning 8.3-4 (1992), pp. 279–292.
[20] K. Zheng and S. Tellex. “pomdp_py: A Framework to Build and Solve POMDP Problems”.

In: arXiv preprint arXiv:2004.10099 (2020).

	1. Introduction
	1.1. Contributions

	2. Related Work
	3. Preliminaries
	4. Amrl-Q
	4.1. Overview
	4.2. Algorithm

	5. Experimental Setup
	5.1. RL Environments
	5.2. Algorithms for Comparison
	5.3. Evaluation Process

	6. Results
	6.1. Comparison with RL Methods
	6.2. Comparison with POMDP Planning
	6.3. Amrl-Q Analysis

	7. Conclusion
	References
	References

