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Investigation of independent
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algorithms in multi-agent
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Mark Crowley
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Independent reinforcement learning algorithms have no theoretical

guarantees for finding the best policy in multi-agent settings. However,

in practice, prior works have reported good performance with independent

algorithms in some domains and bad performance in others. Moreover,

a comprehensive study of the strengths and weaknesses of independent

algorithms is lacking in the literature. In this paper, we carry out an empirical

comparison of the performance of independent algorithms on seven

PettingZoo environments that span the three main categories of multi-

agent environments, i.e., cooperative, competitive, and mixed. For the

cooperative setting, we show that independent algorithms can perform on

par with multi-agent algorithms in fully-observable environments, while

adding recurrence improves the learning of independent algorithms in

partially-observable environments. In the competitive setting, independent

algorithms can perform on par or better than multi-agent algorithms, even

in more challenging environments. We also show that agents trained via

independent algorithms learn to perform well individually, but fail to learn to

cooperate with allies and compete with enemies in mixed environments.

KEYWORDS

multi-agent reinforcement learning, reinforcement learning, deep learning, machine

learning, artificial intelligence

1. Introduction

One of the simplest ways to apply reinforcement learning in multi-agent settings is to

assume that all agents are independent of each other. In other words, every other agent

is seen as part of the environment from any agent’s perspective. Independent algorithms

(i.e., single-agent algorithms) face the issue of non-stationarity in themulti-agent domain

due to the violation of the Markovian property in a Markov Decision Process (Choi et al.,

1999). As a result, independent algorithms lack convergence guarantees, and are not

theoretically sound in the multi-agent setting (Tan, 1993). Despite these shortcomings,

independent algorithms have the advantage of requiring lower computational resources

and being easier to scale to large environments than traditional multi-agent algorithms

which perform exact opponent modeling of each agent. In practice, prior works
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have reported mixed performance for independent algorithms

in different multi-agent domains (Shoham and Leyton-Brown,

2008; Zawadzki et al., 2014; Lowe et al., 2017; Tampuu et al.,

2017; Foerster et al., 2018; Rashid et al., 2018; Berner et al.,

2019). However, a study of the strengths and weaknesses of

independent algorithms across various categories within the

multi-agent domain is lacking in the literature.

In this paper, we investigate the empirical performance of

independent algorithms in multi-agent settings, and compare

them to various multi-agent algorithms under the Centralized

Training and Decentralized Execution scheme (Oliehoek et al.,

2008; Kraemer and Banerjee, 2016). We evaluate these

algorithms on 7 multi-agent environments from the PettingZoo

library (Terry et al., 2020b), which span the 3 main categories

of multi-agent environments (i.e., cooperative, competitive,

and mixed) (Busoniu et al., 2008; Canese et al., 2021; Zhang

et al., 2021; Gronauer and Diepold, 2022). We show that

independent algorithms can perform on par with multi-agent

algorithms in the cooperative, fully-observable setting, and

adding recurrence allows them to perform well compared to

multi-agent algorithms in partially observable environments.

In the competitive setting, we show that parameter sharing

alongside the addition of agent indicators allow independent

algorithms to perform on par or better than multi-agent

algorithms, even in challenging environments. For the mixed

setting, we show that agents of independent algorithms learn to

perform well individually, but fail in learning to cooperate with

allies and compete against enemies.

2. Background information

In this section, we provide readers with a brief overview of

the various concepts and algorithms that are used throughout

the paper.

2.1. Reinforcement learning

In Reinforcement Learning (RL), an agent interacts with the

environment by making sequential decisions (Sutton and Barto,

2018). At every time step, denoted as t, the agent observes a

state st from the environment, and takes an action ut . This

action is executed in the environment, which returns a reward

rt and the next state st+1 that are determined by the reward

function R(st , ut) and the transition probability, P(st+1|st , ut),

respectively. Critically, R(st , ut) and P(st+1|st , ut) are part of

the environment, and are usually unknown to the agent. Since

the transition probability P(st+1|st , ut) conditions the next state

st+1 purely on the current state st and action ut , it satisfies

the Markov property (Markov, 1954). This interaction between

the agent and the environment is called a Markov Decision

Process (MDP) (Bellman, 1957). The objective of an RL agent

is to learn a policy π(ut|st), which maps a state to an action

that maximizes the expected cumulative reward it receives from

the environment. This is written as
∑

t γ
trt , where γ ∈ [0, 1)

represents a discount factor on future rewards.

2.2. Multi-agent reinforcement learning

The single-agent MDP framework is extended to the Multi-

Agent Reinforcement Learning (MARL) setting in the form of

stochastic games (Shapley, 1953). In anN-agent stochastic game,

at every time step, each of the n agents, identified by j ∈

{1, 2, . . . , n} across all agents, takes an action u
j
t . The joint action

is written as ut , 〈u1t , . . . , u
N
t 〉. Every agent receives an agent

specific reward through the reward function R(st , ut , j). State

transitions of the environment are determined by the transition

probability P(st+1|st , ut), which conditions on the state and the

joint action at timestep t.

2.3. Centralized training and
decentralized execution

While it is technically possible to learn a centralized

controller that maps a state to a distribution over the joint

action space, the number of possible combinations of actions

grows exponentially with the number of agents. This makes

centralized control intractable for environments with many

agents. Therefore, this paper is mainly focused on multi-agent

algorithms which correspond to a Centralized Training and

Decentralized Execution (CTDE) scheme (Oliehoek et al., 2008;

Kraemer and Banerjee, 2016). A CTDE algorithm has two

phases. During the control phase, where policies are deployed

in the environment, rather than using a centralized controller to

take actions for all agents, decentralized agents make decisions

based on their individual observations. During the prediction

phase, centralized training is performed, which allows for extra

information (e.g., the state) to be utilized, as long as this is not

required during the control phase.

2.4. Cooperative, competitive, and mixed

This paper follows the convention of classifying every multi-

agent algorithm and environment studied into one of three

categories—cooperative, competitive, and mixed (cooperative-

competitive) (Busoniu et al., 2008; Canese et al., 2021; Zhang

et al., 2021; Gronauer and Diepold, 2022).

In the cooperative setting, agents collaborate with each

other to achieve a common goal. As a result, it is very

common for all agents to share the same reward function

(i.e., a team goal) (Chang et al., 2003). Also known as the

multi-agent credit assignment problem, every agent has to
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deduce its own contributions from the team reward (Chang

et al., 2003). Algorithms studied in this paper that explicitly

address the multi-agent credit-assignment problem include

an on-policy algorithm Counterfactual Multi-Agent Policy

Gradients (COMA) (Foerster et al., 2018), and an off-policy

algorithm, QMIX (Rashid et al., 2018), which addresses the

poor sample efficiency of on-policy algorithms. Additionally,

the CommNet (Sukhbaatar et al., 2016) extension on top of

COMA is utilized for specific cooperative environments to

promote communication between cooperative agents. Other

multi-agent algorithms that are considered for the cooperative

scenario includemulti-agent variants of single-agent algorithms,

such as Multi-Agent Deep Deterministic Policy Gradient

(MADDPG) (Lowe et al., 2017) and Multi-Agent Proximal

Policy Optimization (MAPPO) (Yu et al., 2021).

In the competitive setting, agents play a zero-sum game,

where an agent’s gain is another agent’s loss. In other words,
∑

a r(s, u, a) = 0∀s, u. Algorithms that are studied specifically

in this paper include Deep Reinforcement Opponent Network

(DRON) (He et al., 2016), MADDPG and MAPPO. MADDPG

and MAPPO learn a separate critic for every agent, which gives

the algorithms flexibility to learn different behaviors for agents

with different reward functions.

In amixed or cooperative-competitive setting, environments

are neither zero-sum (competitive) nor cooperative, and they do

not necessarily need to be general-sum either. A common setting

would be environments that require every agent to cooperate

with some agents, and compete with others (Busoniu et al., 2008;

Canese et al., 2021; Zhang et al., 2021). MADDPG and MAPPO

are used here for the same reason as the competitive setting.

2.5. Independent algorithms and
non-stationarity

One naive approach for applying single-agent RL to

the multi-agent setting would be the use of independent

learners, where each agent treats every other agent as part

of the environment, and learns purely based on individual

observations. In a multi-agent setting, the transition probability

P and reward function R are conditioned on the joint action u.

Since all agents in the environment are learning, their policies

constantly change. Therefore, from each independent learner’s

perspective, the transition probability and reward function

appear non-stationary, due to the lack of awareness of other

agents’ actions. This violates theMarkovian property of anMDP,

which then causes independent algorithms to be slow to adapt to

other agents’ changing policies, and as a result, face difficulties

in converging to a good policy (He et al., 2016; Hernandez-Leal

et al., 2017; Papoudakis et al., 2019).

In this paper, we chose to use a popular off-policy

algorithm, Deep Q-Network (DQN) (Mnih et al., 2015), and

an on-policy algorithm, Proximal Policy Optimization (PPO)

(Schulman et al., 2017). In specific partially observable

environments, Deep Recurrent Q-Network (DRQN)

(Hausknecht and Stone, 2015) is also utilized. Following

the work of Gupta et al. (2017), parameter sharing is utilized

for all independent algorithms, such that experiences from all

agents are trained simultaneously using a single network. This

allows the training to be more efficient (Gupta et al., 2017).

The aforementioned independent algorithms are tested in all 3

categories of multi-agent environments.

3. Experimental setup

In this section, we introduce the environments used for

the experiments, specify the various preprocessing that were

applied, and other relevant implementation details.

3.1. Environments

The experiments were performed on multiple multi-agent

environments from the PettingZoo library (Terry et al., 2020b),

which contains the Multi-Agent Particle Environments (MPE)

(Lowe et al., 2017; Mordatch and Abbeel, 2017) and multi-agent

variants of the Atari 2600 Arcade Learning Environment (ALE)

(Bellemare et al., 2013; Terry and Black, 2020).

For the cooperative setting, experiments were performed on

a modified version of the 2-player Space Invaders (Bellemare

et al., 2013; Terry and Black, 2020), and the Simple Reference

MPE environment (Lowe et al., 2017; Mordatch and Abbeel,

2017). In Space Invaders, both agents share the common

goal of shooting down all aliens. To make Space Invaders

cooperative, we removed the (positive) reward that is given to

a player whenever the other player gets hit. Additionally, the

environment rewards every agent individually by default. Since a

number of cooperative multi-agent algorithms (e.g., QMIX and

COMA) assume that only a team reward is given, we modified

the reward function such that a team reward is given instead (i.e.,

both agents receive the sum of their individual rewards). This

setup exemplifies the multi-agent credit assignment problem,

the effect of which is studied more closely in the Section 4.1.1.

On the other hand, in the Simple Reference environment,

two agents are rewarded by how close they are to their

target landmark. However, the target landmark of an agent is

only known by the other agent, as a result communication

is required for both agents to navigate successfully to their

target landmarks.

For the competitive setting, we performed experiments on

three 2-player zero-sum competitive games from the Atari

suite—Boxing, Pong and Space War. For the mixed setting,

we opted for the Simple Tag and the Simple Adversary MPE

environments. Simple Tag is a Predator-Prey environment that

consists of 3 predators and a prey (Mordatch and Abbeel,

2017). The prey travels faster and has to avoid colliding with

Frontiers in Artificial Intelligence 03 frontiersin.org

https://doi.org/10.3389/frai.2022.805823
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Lee et al. 10.3389/frai.2022.805823

the predators, while the 3 predators travel slower and have

to work together to capture the prey. The rewards received

by the prey and a predator sum to 0 (i.e., the prey gets a

negative reward for collision, while the predators get rewarded

positively), and all predators receive the same reward. The prey

is also negatively rewarded if it strays away from the predefined

area (a 1 × 1 unit square). This environment is general-sum

because it contains 3 predators and a single prey. On the

other hand, Simple Adversary consists of 2 cooperative agents

and an adversary agent. Both cooperative agents receive equal

reward, based on the distance of the closest agent to the target

and the negative distance of the adversary to the target. The

adversary is also rewarded based on its distance to the target,

but unlike the cooperative agents, it has to infer the location of

the target based on the location of the cooperative agents, which

it observes. Therefore, the cooperative agents have to cooperate

in order to split up to get close to the target while deceiving the

adversary away from the target. Similarly, the Simple Adversary

environment is also general-sum.

3.2. Preprocessing

For the MPE environments, no preprocessing was done,

and default environment-parameters were used for all

MPE experiments.

For the Atari environments, following the

recommendations of Machado et al. (2018), we performed

the following preprocessing:

• Reward clipping to ensure that the rewards at every

timestep were clipped between the range of [-1, 1].

• Sticky actions with a probability of 0.25.

• Frame skip of 4.

The number of steps per episode was set to a limit of 200 for

all Atari environments, as that yielded the best results in general.

Additionally, no-op resets were also performed on the first 130

frames for Space Invaders, and the first 60 frames for Pong.

Furthermore, the action spaces for both Atari environments

were shrunk to their effective action spaces in order to

improve learning efficiency. For all competitive environments

specifically, we also concatenated a one-hot vector of the agent’s

index to the observations so that independent algorithms can

differentiate one from the other when parameter sharing is

utilized. The effect of this addition is studied more closely in

Section 4.5.

All preprocessing were performed using the SuperSuit

library (Terry et al., 2020a).

3.3. Implementation

Implementations of all algorithms were based on the

following open-sourced libraries/reference implementations:

• Implementation of DQN and DRON were based on the

Machin library (Li, 2020).

• Implementation of independent PPO was based on Stable

Baselines3 (Raffin et al., 2019).

• Implementation of DRQN, QMIX, COMA, and CommNet

came from the MARL-Algorithms GitHub repository

(starry sky6688, 2019).

• Implementation of MADDPG came from the original code

implementation (Lowe et al., 2017).

• Implementation of MAPPO came from the original code

implementation (Yu et al., 2021).

For both DQN and DRON, the underlying DQN

implementations included Double DQN (Van Hasselt et al.,

2016), the dueling architecture (Wang et al., 2016) and priority

experience replay buffer (Schaul et al., 2015). On the other

hand, the implementation of DRQN did not use any of the

aforementioned add-ons. For PPO and MAPPO, 4 parallel

workers were used for all environments with homogeneous

state and action spaces. Default hyperparameters were used for

all algorithms, and no hyperparameter tuning was performed.

Details of the hyperparameters used can be found in the

Supplementary material.

All experiments were performed across 5 different seeds.

Parameter sharing was utilized for all algorithms throughout

the experiments for all environments with homogeneous state

and action spaces. For multi-agent algorithms that perform

centralized training (e.g., QMIX, COMA, MADDPG etc.),

the global states were represented by the concatenation of

all agents’ local observations. We also used the 128-byte

Atari RAM as state inputs, rather than visual observations.

This allows the algorithms to focus their learning on control

rather than on both control and perception, improving

learning efficiency.

For the mixed setting, the observation and action spaces

differ between predators and the prey in the Simple Tag

environment, while the observation spaces of the cooperative

agents differ from the adversary agent in the Simple Adversary

environment. As a result, in both environments, none of the

agents have their parameters shared. Parameters between the

predators/cooperative agents are also not shared to ensure

that no bias is introduced (since they would have more

data to learn from compared to opposing agents in their

respective environments).

4. Experimental results and
discussion

In this section, we highlight the experiments performed

on all environments, and provide discussions about the

obtained results. Although we only refer to the plotted figures

in the following subsections for performance comparison
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TABLE 1 Final scores (mean and standard deviation) of algorithms

obtained over the last 100 episodes across all 5 seeds in the Space

Invaders and Simple Reference environments.

Algorithm Simple reference Algorithm Space invaders

QMIX –46.2±28.4 QMIX 12.5±3.28

RMAPPO –36.8±11.8 RMAPPO 16.2±3.31

MAPPO –38.0±14.0 MAPPO 22.5±3.45

CommNet –58.2±18.5 MADDPG 9.78±0.98

COMA –36.6±13.3 DRQN 12.2±1.61

DRQN –52.8±19.1 DQN 15.7±3.70

DQN –66.0±33.0 PPO 19.8±3.52

PPO 7.92±2.69

The highest score in each environment is bolded.

TABLE 2 Overall winrate percentage of various algorithms across

Boxing, Pong and Space War environments.

Algorithm Boxing(%) Pong(%) Space war(%)

DQN 94 88 70

PPO 68 36 52

DRON 84 90 68

MADDPG 54 28 72

MAPPO 64 40 66

RMAPPO 64 24 76

The highest winrate percentage for every environment is bolded.

purposes, the final score obtained by every algorithm in all

environments are also reported in Tables 1–3.

4.1. Cooperative

We ran the various algorithms on the Simple Reference

environment for 240k episodes (6× 106 steps). From Figure 1A,

it could be observed that all independent algorithms converged

to a lower score, except for DRQN, whose recurrence allowed

it to vastly outperform DQN and converge to a score on

par with multi-agent algorithms. However, this trend was not

observed when comparing MAPPO to its recurrent variant (i.e.,

RMAPPO), as MAPPO performs equally well as RMAPPO.

We hypothesize that since MAPPO’s centralized critic learns

based on the joint observation and action of both agents, this

minimizes the amount of partial observability of every agent,

and allows each agent to learn to communicate with other agents

effectively without recurrence. In contrast, for independent

algorithms, such as DQN, where the interactions between the

agents are not explicitly learned (since all other agents are treated

as part of the environment), adding recurrence could help

mitigate some resulting partial observability, hence improving

their performance, as described above.

TABLE 3 Final scores (mean and standard deviation) of algorithms

obtained over the last 100 episodes across all 5 seeds in the Simple Tag

and Simple Adversary environments.

Simple Tag

Algorithm Predator Prey

DQN 3.24±7.99 −4.93±9.36

PPO 2.46±7.60 −47.0±57.9

MADDPG 4.40±9.24 −8.10±12.2

RMAPPO 14.0±20.5 −16.4±21.2

MAPPO 13.4±19.1 −20.8±22.5

Simple Adversary

Algorithm Adversary Cooperative Agent

DQN −18.2±9.27 7.56±7.85

PPO −52.7±21.7 34.2±20.0

MADDPG −15.6±7.65 7.24±6.35

RMAPPO −29.4±15.0 10.8±16.4

MAPPO −24.9±12.2 9.11±13.8

The highest scores for every type of agent in both environments are bolded.

Unlike the Simple Reference environment, the Space

Invaders environment seemed to favor non-recurrent variants

of algorithms (Figure 1B). MAPPO vastly outperformed

RMAPPO, and similarly DQN outperformed DRQN. This is

also likely the underlying reasoning behind the comparatively

poorer performance of the multi-agent algorithms, such as

QMIX, COMA and CommNet, all of which were implemented

with recurrent neural networks under the CTDE scheme.

Additionally, since there is no unit collision in the Space

Invaders environment (i.e., agents can move past each other

without being blocked), they do not have to coordinate between

themselves to achieve a high score in the environment; a

good policy can be learned solely by having agents maximize

their individual rewards. This explains the strong performance

that was achieved by DQN. Also, since this is a cooperative

task with both agents having identical goals, learning separate

representations for individual agents is not very important;

the learning of both agents assist each other. This is shown

in Figure 8B in Section 4.5, where the addition of an agent

indicator did not yield any performance improvement for DQN

on Space Invaders.

Given such circumstances, it is interesting to observe the

stronger performance of MAPPO compared to the independent

algorithms. By conditioning on the joint action, MAPPO’s critic

has full observability into the joint action that resulted in the

team reward. Therefore, the observed reward is unbiased, which

allows the learning process to be more efficient. In contrast,

independent algorithms have to learn from a noisy team reward
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signal, where an agent could receive a large positive team reward

even when it did nothing. This relates to the problem of credit

assignment in MARL, noted in prior works (Hernandez-Leal

et al., 2019).

4.1.1. Multi-agent credit assignment problem in
fully observable settings

In this section, we attempt to study the effect of using

a team reward signal, rather than individual reward signals

on various independent and multi-agent algorithms in a fully

observable environment. When team rewards are the only

rewards given, these reward signals are noisy for independent

algorithms because the agent, which treats every other agent as

part of the environment, does not know the actions taken by

other agents. This makes it difficult for independent algorithms’

agents to learn how their individual actions contribute to

the team reward signal. We performed the experiments on

Space Invaders, in which the default agents receive individual

rewards from the environment. To study the effect of the multi-

agent credit assignment problem, we performed two runs per

algorithm, one with team rewards only, and the other with

individual rewards only (i.e., agents are rewarded independently

by the environment).

For multi-agent algorithms, such as MAPPO (Figure 2B)

and RMAPPO (Figure 2C), having a team reward does not

have a large effect on the performance of the algorithms.

This is expected because these algorithms have critics

that learn from the joint action, which allow them to

implicitly learn the estimated contribution of every agent

without factorization.

On similar lines, regarding independent algorithms, we

observe that having team rewards instead of individual ones do

not impact their performance adversely (Figure 2A). A plausible

explanation could be that since parameter sharing is utilized

and all agents receive the same reward for a given joint action,

this allows the independent algorithms to correlate actions from

different agents that produced similar (high) rewards.

4.2. Competitive

For every competitive environment, all algorithms were

trained for a fixed number of steps (1.2 × 107). Performance

evaluation is performed by pitting algorithms head-to-head

against each other for 3 episodes for all possible permutations,

during which no training is performed. To ensure fairness,

the ordering of algorithms (i.e., Algorithm A playing as player

1 or 2) are also taken into consideration. This is because in

environments such as Pong, the right paddle player is always

the serving player, thus having an advantage. At the end

of an episode, the agent of an algorithm that has achieved

higher cumulative reward is considered the winner. If both

agents achieved the same amount of cumulative reward (draw

scenario), both agents are considered to win. The entire

evaluation process is repeated across all 5 seeds, and is the

basis behind the stacked bar charts (Figures 3–5). As previously

mentioned, the final winrates percentage obtained by each

algorithm across all competitive environments are also reported

in Table 2.

Among all algorithms, DQN and DRON are the best

performers in Boxing and Pong environment, by a large

FIGURE 1

Training curves of various algorithms in two cooperative environments. For every algorithm, the solid line represents the mean reward per

episode, while the shaded region represents the 95% confidence interval around the mean. (A) Shows training curve for Simple Reference

environment, (B) shows training curve for Space Invaders environment.

Frontiers in Artificial Intelligence 06 frontiersin.org

https://doi.org/10.3389/frai.2022.805823
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Lee et al. 10.3389/frai.2022.805823

FIGURE 2

Training curves of various algorithms in Space Invaders, comparing when individual rewards are given (blue) to when team rewards are given

(orange). (A) Shows training curve of DQN, (B) shows training curve of MAPPO, (C) shows training curve of RMAPPO.

margin. DQN outperforms DRON in the Boxing environment

(Figure 3), while DRON outperforms DQN in the Pong

environment (Figure 4). Since both of these environments are

reactive in nature, this meant that an agent can learn a good

policy solely by understanding how to react to the situation at

hand. For instance, in Pong, this meant learning to position

the paddle according to the trajectory of the ball (toward the

agent). While learning on the joint action could allow agents

to learn to better predict the incoming trajectory of the ball, it

can be observed that the additional layer of complexity causes

the sample efficiency to decrease and only yields diminishing

returns. Additionally, since both of these environments are fully

observable, critics that learn based on the joint observation of

both agents do not necessarily provide any new information.

In the Space Wars environment, two agents shoot missiles

at each other. Critically, since the missiles travel faster than

the agents and the missiles can ricochet off walls, prediction

and positioning are key for shooting and dodging effectively.

This makes the environment challenging. In this environment,

RMAPPO performed the best, closely followed by MADDPG

and DQN (Figure 5). By conditioning on past trajectories,

RMAPPO was able to better learn the mechanics of the

environment (such as ricocheting missiles), allowing it to have

better aim than other algorithms. However, this only yields

marginal improvement over the MADDPG and DQN. Even

with the complexity of the environment, DQN’s performance

was nearly on par with MADDPG, and performed better

than the rest of the multi-agent algorithms, including DRON

and MAPPO.

4.3. Mixed

In the Simple Tag (i.e., Predator-Prey) environment, DQN’s

prey successfully learned to minimize the number of collisions

with the predators, which can be observed by the strong

performance achieved by the prey (Figure 6B). However,

similar to PPO, since the predators were trained completely

independently (i.e., their parameters were not shared), they did

not manage to learn how to cooperate with one another to
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FIGURE 3

Performance of various algorithms when playing against other algorithms in the Boxing environment. (A) Shows the number of games won as

the first player, (B) shows the number of games won as the second player, (C) shows the overall win rate percentage.

capture the prey (Figure 6A). It is interesting to observe that

MADDPG converged to a policy similar to DQN, with the

difference being that its predators have learned to cooperate

better, thus getting slightly higher rewards compared to DQN’s

predators (Figure 6A). Subsequently, as a result of the higher

rewards obtained by the predators, MADDPG achieves a slightly

lower score for its prey (Figure 6B).

MAPPO and RMAPPO, on the other hand, learned a

different strategy. As we can observe from the comparatively

noisier curves obtained from their predators and preys

(Figures 6A,B), there is a constant tug-of-war between the prey

and the predators—as the predators learn how to cooperate

better, their scores increase, which subsequently causes the prey

to learn how to dodge, decreasing the predators’ scores, and vice

versa. Since the predators of MAPPO and RMAPPO achieves

a much higher score compared to all other algorithms, this

is indicative that the predators have successfully learned to

cooperate to trap the prey.

Similar to the Simple Tag environment, the Simple

Adversary environment exhibits similar patterns in terms of

relative performances of the various algorithms. DQN and

MADDPG converged to a similar policy, where the stronger

performance of the adversary agent implies that the adversary

agent was able to better locate the target location (Figure 7A).

In other words, the two cooperative agents were less successful

at deceiving the adversary agent into an incorrect target. On the

other hand, MAPPO and RMAPPO’s adversary agent converged

to a substantially lower score (Figure 7A), but conversely the

cooperative agents were able to achieve greater score than those

of DQN and MADDPG (Figure 7B). This is indicative that

the cooperative agents (of MAPPO and RMAPPO) were more

successful in learning to cooperate by positioning close to the

true target while deceiving the adversary away from it.

4.4. Performance of independent PPO

Throughout all experiments performed, PPO exhibits poor

performance in most of the environments across all 3 settings.
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FIGURE 4

Performance of various algorithms when playing against other algorithms in Pong. (A) Shows the number of games won as the first player, (B)

shows the number of games won as the second player, (C) shows the overall win rate percentage.

While PPO has been shown to work well in a wide variety

of environments (Schulman et al., 2017; OpenAI et al., 2018;

Berner et al., 2019; Yu et al., 2021), PPO is highly sensitive to

the choice of implementation and hyperparameters, as reported

in prior works (Andrychowicz et al., 2020; Engstrom et al.,

2020). We find that this problem is exacerbated in multi-agent

environments, especially in the mixed settings, since those are

the hardest.

4.5. Importance of agent indicator

In this section, we list some interesting findings from the

addition of agent indicators to independent algorithms when

utilizing parameter sharing.

Interestingly, in both cooperative environments, there was

no noticeable improvement in the performance of DQN when

an agent indicator was added (Figures 8A,B). As was previously

discussed, in the case of Space Invaders, since both agents

have identical goals and similar representations, there is little

need to distinguish between either agent. On the other hand,

due to the partially observable nature of the Simple Reference

environment, DQN performed similarly poorly, regardless of

whether agent indicators were present. In this case, the addition

of recurrence would have resulted in a much more significant

difference instead, as was previously shown.

Conversely, for the Pong environment, even though it is also

fully observable (akin to Space Invaders), the representation of

both agents are not interchangeable. Utilizing parameter sharing

without agent indicators, all algorithms struggled to learn due to

the inability to tell which paddle were they controlling at every

timestep. The only exception was RMAPPO (Figure 9), which

was able to condition on the sequence of previous observations

and actions to infer which paddle was it controlling.

5. Conclusion

In this section, we provide a summary of the findings and

discussions from the previous sections.
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FIGURE 5

Performance of various algorithms when playing against other algorithms in the Space War environment. (A) Shows the number of games won

as the first player, (B) shows the number of games won as the second player, (C) shows the overall win rate percentage.

FIGURE 6

Training curves of various algorithms in the Simple Tag, a Predator-Prey environment. (A) Shows the reward of a predator (all predators obtain

the same reward), (B) shows the reward of the prey.
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FIGURE 7

Training curves of various algorithms in the Simple Adversary environment. (A) Shows the reward of the adversary, (B) shows the reward of a

cooperative agent (both cooperative agents obtain the same reward).

FIGURE 8

Comparing DQN with (blue) and without (orange) agent indicators in (A) Simple Reference and (B) Space Invaders environment.

5.1. Cooperative

In the cooperative setting, for environments where

individual agents have full observability such as Space Invaders,

we showed that independent algorithms can perform even

better than certain multi-agent algorithms. Furthermore, we

showed that independent algorithms are able to cope well with

the multi-agent credit assignment problem in environments

that are fully observable with a relatively small number of

agents, and where every agent has the same task. On the other

hand, in the Simple Reference environment where the need for

agents to communicate induces partial observability, adding

recurrence allowed independent algorithms to perform as

well as other multi-agent algorithms. We also discussed the

significance of learning on the joint observation and action,

rather than individual ones, and showed that MAPPO performs

as well as DRQN in the Simple Reference environment, without

the need for an RNN. Moreover, in Space Invaders, MAPPO

was able to consistently achieve the highest score amongst all

other algorithms.

5.2. Competitive

In the Boxing and Pong environment, DRON and DQN

were able to outperform all other algorithms. We argued

that this is due to the reactive nature of both environment,

which results in diminishing returns for multi-agent algorithms

that learn joint actions. On the other hand, in the more

complex Space Wars environment, RMAPPO performed the
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FIGURE 9

Performance of various algorithms when playing against other algorithms in Pong without agent indicators across 3 seeds. (A) Shows the

number of games won as the first player, (B) shows the number of games won as the second player, (C) shows the overall win rate percentage.

best as it was able to leverage on past observations to make

better predictions. However, DQN still performed on par or

better than other multi-agent algorithms. Furthermore, we

showed that with the addition of agent indicators, independent

algorithms were able to learn robust policies using parameter

sharing in Pong.

5.3. Mixed

In both mixed environments, we saw that since there

were no parameter sharing to induce cooperation, cooperative

agents of independent algorithms were unable to learn how

to cooperate with each other to compete with the opposing

agent. This was reflected in DQN’s stronger performance as

the prey in the Simple Tag environment, and the adversary

in the Simple Adversary environment. Agents of MAPPO and

RMAPPO, on the other hand, were able to learn to cooperate,

leading to higher rewards as predators in Simple Tag, and

as cooperative agents in Simple Adversary. Furthermore, the

noisiness of graphs suggest that there is a constant tug-of-war

between both opposing parties, as one tries to outsmart the

other. Interestingly, in both mixed environments, MADDPG

exhibits similar characteristics to DQN, suggesting that its

cooperative agents in both environments also faced difficulties

in learning to cooperative.

6. Future work

In this section, we highlight some future work that

could potentially bring more insights into having a broader

understanding of dealing with non-stationarity and partial

observability for independent algorithms, both of which are

common in the multi-agent setting. In the Space Invaders

environment, we observed that independent algorithms were

able to learn well with just a team reward. Future work

could be done to determine if this was only the case for

fully observable environments, or under what conditions
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would independent algorithms still be able to cope with

the multi-agent credit assignment problem. It would also be

interesting to study the performance of non-recurrent variants

of multi-agent algorithms such as QMIX and COMA in fully

observable environments. Since the experiments performed in

this paper only included fully-observable competitive andmixed

environments, future work can also include a more diverse set

of environments, such as partially observable competitive and

mixed environments.
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