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Abstract—The novel method proposed in this paper is com-
promised of application of two Convolutional Neural Networks
(CNN) working in parallel to simultaneously classify driver be-
haviors while classifying maneuvers by using time series data. We
claim that the Parallel Convolutional Neural Network (PCNN)
not only speeds-up training time but also increases performance
since having information about the maneuver helps to improve
behavior classification performance and vice versa. In this study,
both simulation and real-world driving datasets are utilized for
driver behavior analysis. As simulation data, mobile phone sensor
data are simulated as a time series using a combination of a traffic
simulator (SUMO) and a car simulation system (Webots). The
same type of data is collected with a specially designed vehicle
traveled on a defined route around a predefined region. The
collected data are then separately utilized as training and testing
data for classification of both maneuvers (e.g turns and lane
changes) and driver behaviors (e.g aggressive, non-aggressive)
applying a novel method using deep learning on time series data.
In addition, other methods which are commonly used for time
series analysis, Hidden Markov Models(HMMs) and Recurrent
Neural Networks (RNN), are applied to the same datasets to
compare with PCNN. According to the results, the CNN classifiers
perform efficiently for a single task and PCNN outperforms both
single task-CNN and RNN with an average accuracy of 86%.

I. INTRODUCTION

There are three major causes to road traffic accidents:
human error, vehicle failure and road conditions. The NHTSA
lists speeding, following improperly, erratic lane changing,
passing where prohibited as the leading causes of driving
fatalities due to aggressive driving. Just speeding is responsible
for 11,258 fatal crashes on the roads in 2020 [1]. Perhaps
not surprisingly, the first cause is the most influential [2] so
understanding driver behavior is key to improving road safety.
Furthermore, driving behavior can be positively influenced
when a driver is monitored and behaviors are recorded [3].
There is already a strong history of driver behavior detection
systems that try to ensure both driver safety and compliance
to driving regulations [4]. More recently, Advanced Driver
Assistance Systems (ADAS) have utilized classification and
pattern recognition approaches [5]. In this paper, we present
a novel method for driving behavior analysis, which is our
Parallel Convolutional Neural Network as a classification
method.

Driver behavior is a generic term including different
driving maneuvers and driving mannerisms consisting of many
variables. Driver behavior analysis can be decomposed into

two complementary sub-problems: driving maneuvers detec-
tion and driving characteristics analysis. For instance, driver
maneuvers can include turns, lane changes, stops, accelerat-
ing and decelerating events. There are many different types
of driver characteristics in the literature such as speeding,
distracted driving, fatigued driving, inattentive, aggressive
driving and drunk driving. In this paper the following are
studied: Normal Driving and Aggressive Driving for turns at
intersection and lane changes.

Driving maneuvers are parts of a trip consisting of char-
acteristics of driving patterns. The common driving maneu-
vers types include: stopping, acceleration/deceleration, lane
changes and intersection turns, driving around curved roads
and roundabouts, entry and exit to highway ramps. In order
to derive these manoeuvre types, each maneuver should be
analyzed according to vehicle kinematics. For example, lane
changes and intersection turns are inferred from angular ve-
locity and lateral acceleration patterns [6]. Driver behavior
applications aim to detect driving characteristics which are
out of the ordinary or abnormal [7]. One way to achieve this is
to first defining normal or abnormal driving characteristics and
then deriving different styles by calculating deviations from
these. For this reason, some machine learning studies have
just considered training individual driving history rather than
using general rules or thresholds when determining style of
driving [8]. Different data sources can be used to detect driver
actions and driving characteristics: in-vehicle and smartphone.
With the rapid development of today’s information and com-
munications technology, mobile devices such as smartphones
are capable of collecting spatio-temporal information in real-
time with onboard sensors [9]. Reducing the overhead costs in
designing and implementing a sustainable large-scale are the
main advantages of analyzing driver behavior via smartphone-
based systems.

II. RELATED WORK

Recently many projects have conducted research on driving
behavior analysis. Different machine learning algorithms have
been applied to learn and model driver’s behaviors such as:
Artificial Neural Networks (ANN), Support Vector Machines
(SVM), Fuzzy Logic (FL), Dynamic Bayesian Networks
(DBN), Random Forest (RF), Convolutional neural network
(CNN), and Hidden Markov Models (HMM). [3] and [10]



are review papers that evaluate recent studies which is on
the driver behavior characteristics analysis. Artificial Neural
Networks (ANNs) have increasingly gained more interest in
the field of driver behavior and maneuver detection [11].
[12],[13], and [14] are some examples of Artificial Neural
Networks applications based on computer vision techniques
in drowsiness detection, distraction detection and steering be-
havior prediction respectively. ANNs can be applied on human
behavior modeling since human behaviors can successfully be
represented by using nonlinear and stochastic models. In the
paper [11], ANNs were used to classify aggressive, normal and
calm driver behaviors. The dataset consisted of acceleration,
speed and throttle features which were been collected from a
simulator.

Other approaches [15], [16] have used clustering techniques
to detect and label driving styles. Wang et al. [15] proposed
a semi-supervised SVM method to classify aggressive and
normal driving style. HMM are also a commonly used method
to analyze driver behavior [3] especially to estimate driving be-
havior [17] and to recognize driving maneuvers [18]. The study
[19] uses HMMs in order to characterize and detect aggressive
driving maneuvers for calculation of car insurance fee through
estimating the driver aggressiveness, providing a summary of
existing driving style studies with HMM method. Cervantes-
Villanueva et al. [20] applied RF, SVM, and fuzzy rule-
based classifiers for detecting maneuvers which are stopped,
driving, parking, and parked. They used smartphone collected
accelerometer data in this study and the RF results are the
best in the two-level of classifiers. In [21], MLP, SVM, RF,
BN are applied to classify driving maneuvers on smartphone
sensors’ data. The paper also compares these methods and
combinations of the supervised machine learning algorithms
for classification of seven driving maneuvers.

III. OUR APPROACH

The main components of the aggressiveness driver analysis
system are a map, a traffic simulation, a controller and a deep
classification tool (see Fig 1). For the purpose of learning to
identify aggressiveness in driving, we first started to train and
test the proposed model in this study on a simulated dataset
and on a newly collected real-world driving resulting in the
Driver Behaviour Learning (DBL) dataset.

A. Data Simulation

Data simulators can provide a low-cost solution to modeling
a wide range of scenarios in a realistic manner in order to
predict the consequences of urban infrastructure modifications.
A microscopic traffic simulator, called Simulation and Urban
Mobility (SUMO) and Webots Simulator, were chosen as
initial step for this study since they allow us to model vehicles
individually and to control their features including driving
behaviors(i.e. aggressive and normal).

The first phase of data simulation is data generatione which
proceeds as follows: (1)The Open Street Map (OSM) is
downloaded online by selecting random latitude and longi-
tude from the world city latitude and longitude list. (2) A

road network is created from OSM in order to be utilized
for SUMO. (3)The population of vehicle agents are defined
randomly from a defined range of sizes. Different vehicle
types are defined for different driving behaviors (aggressive
and normal) by changing parameters based on previous works
parameters[22][23]. (4)The probability of these vehicle types
are distributed randomly. (5)Random trips are created by
selecting random two nodes for start and end points for and
by utilizing numbers and distribution of vehicles.

The second phase is the application all information which
are random trips, vehicle types, and numbers into the sim-
ulator: (A) SUMO utilizes network, trips and vehicle types
information to simulate traffic and save data. (B) Labels can
be created successfully according to output data of simulation.

1) SUMO Simulator: In order to simulate driver behaviors,
we need to not only simulate the traffic but also allow control
of the vehicle’s features and behaviors. SUMO [24] is an open
source multi-modal traffic simulation tool that can simulate
multiple types of vehicles. It is a type of “microscopic”
simulator, meaning that each vehicle moves its own route, and
behaves individually. SUMO has a continuous space, and it
records data for each vehicle in discrete time (the default time
step is one second) and can include traffic lights. We have used
SUMO version 0.12.3 2 in this study. The vehicle dynamics
of driving on the road in SUMO are determined by several
models, the most important of which for driver behaviors are:
car-following model that controls a vehicle speed according
to the vehicle ahead of it, intersection model that controls
vehicles decision at different types of intersections based on
right-of-way rules and gap acceptance and lane-changing
model which determines lane position on multi-lane roads and
adjusts speed for lane changing.

2) Webots Simulator: Webots is an efficient open source
robotics simulation software using the Open Dynamics Engine
(ODE) library. Webots provides a real-car based vehicle model
with realistic dynamics features with ODE. Also, multiple
intelligent vehicles can be simulated in Webots. In Webots
simulation world, the Open Street Map (OSM) data is used
to extract the road network and its features. The OSM maps
are converted to a graph data structure for Webots. SUMO
simulates traffic and controls each vehicle behaviors, while
Webots simulates each vehicle dynamics, enables to add
sensors into vehicles and calculates outputs of these sensors
based on coming traffic information from SUMO.

B. Real-World Driving Behaviour Learning Dataset (DBL)

Our second dataset comes from a study we conducted over
2019-2022 to observe human driving behavior in real-world
conditions across a range of road types, driver age groups and
experiences. The study gathered 50 volunteer participants who
drove a predetermined route (See Fig. 3) around the region of
Waterloo, Ontario, Canada. Due to the COVID-19 pandemic
most drivers ended up driving the route entirely on their own,
following direction from an on-board GPS navigation system.
The vehicle for the study, was equipped with a top-mounted
Lidar, front and two rear-facing radar, camera sensors, onboard



Fig. 1: General system architecture for the driver simulation tool.

Fig. 2: An illustration of the GUI for the SUMO traffic
simulator.

computers, and various readout displays for the passenger. The
onboard computers collected GPS, map, Lidar, Video System
(VLT) and CAN-BUS data. A self-evaluation with an exit
survey and annotation data from research staff was utilized
to create the Driver Behaviour Learning (DBL) dataset used
in this paper.

Data was collected on multiple road types (e.g. major
highways, city centers and rural highways), under different
traffic conditions (e.g. rush hour, traffic congestion times, low
traffic) and under different environmental conditions (winter,
spring, summer). The same route was repeated twice for each
participant, with a short break in-between. The route length is
around 57 km which takes about 1 hour 10 min to complete
without traffic. One tour consists of approximately 12 Right
turns, 11 Left turns, one forced left lane change, three forced
right lane changes and two straight roundabouts.

1) Route: City roads (urban environment) trips are com-
promised of city-specific features such as: pedestrians, cross-
walks, traffic lights, stop signs, cyclists, roads affected by
building constructions, parked-cars, turns, narrow roads, etc.
The highway parts consists of features such as: curved roads,
multi-lane sections, on and off-ramps, connections between
highways via on-ramps, varying speed-limits, and highway
divisions. The country roads includes features such as: stop
signs, yield signs, roundabouts, traffic lights, single-lane two-
way roads, turns, varying speed limits, traffic, etc.

2) Participants and Procedure: All participants were se-
lected as experienced drivers with full ‘G’ licenses to drive in

Fig. 3: The route that used for participant drives

Ontario on all road types. Participants were prioritized based
on the diversity of the applicant’s information to ensure that an
appropriate cross-section of the population were selected. An
annotator sat beside the participant for the first 24 participant
drives. The first 20 participants’ drives are labeled and utilized
for driver behavior analysis in this study.

Research Ethics Board Approved: The DBL dataset was
collected over the years 2019-2022 during a human participant
study (”Driver Behavior Learning [REB: 31381]”) which
underwent rigorous approval with the University of Waterloo
Office of Research Ethics to ensure that the safety, privacy and
health of the driving participants was protected at all times.

IV. PARALLEL CONVOLUTIONAL NEURAL NETWORKS

Convolutional neural networks consist of alternating convo-
lution and pooling layers which allow more efficient learning
of high dimensional data than a fully connected network by
leveraging weight sharing and a locality assumption. The
motivation for our research is to use the efficient weight
sharing and locality assumptions of CNNs to develop a richer
model for multidimensional time series data.

To utilize CNNs, we first need to transform our raw sensor
1D time series into a meaningful 2D form. We create 2D
image representation of the data by using each feature such
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Fig. 4: Parallel CNN architecture for two different tasks, driving maneuvers and driver behaviors.

as position, velocity and angular velocity to define rows of
an image. We then generate the columns of our data using
a sliding window across time on the original time series
data. Following the windowing, the data is of dimension
windowsize×featuredimension. This dataset is then
input into the CNN for training.

For classification sliding window sizes of 200 and 300 steps
are applied with step size of 2 on position, velocity and angular
velocity data derived from SUMO simulated data. Each
window is labelled based on consistency of an event. Windows
without any labelled events are labelled as ’other’. Turn events
crossing window divisions were separated from the dataset and
utilized for turn classification. The whole dataset consists of
163,089 events (turns and lane changes) in total. To achieve a
class-balanced, the class with the fewest samples determined
the train/test data set sizes (i.e. Aggressive Rlch has 7,625
samples). For turn event classification, 15,250 events, equally
distributed between aggressive and normal, were used with
80% used for training and 20% for testing. Also, lane changes
were separated from the dataset and utilized for lane changes
classification. There are 15,250 lane changes which have
been selected from the entire dataset consisting half of them
aggressive and same percentages (80%-20%) of lane changes
events used for training and testing.

As with the simulated data, sliding window sizes of 2-3
seconds are applied with overlapping 2 step size on position,
velocity, and angular velocity data coming from DBL. If
the sample window has both maneuver and behavior labels,
it is selected as the main dataset to be used for the pro-
posed classification method. The whole dataset has more than
120,000 sample event windows. However, in order to balance
the datasets for each class, downsampling is applied and the
aggressive left lane change class sample size is selected as the
maximum number for each class which is 3,904. Samples from
other maneuver classes are selected randomly based on this
sample size. 15,616 events combination have been generated
for 10 runs including 7,808 aggressive actions. 70%, 10% and
20% are the percentages that are used for training, validation
and testing respectively.

A. Parallel Convolutional Neural Network Implementation

The Parallel CNN architecture (in Figure 4) we build for
the aggressive driver identification problem consists of two
CNN classifiers being trained and working in parallel as
follows. The first Convolution and Pooling layers are used
for both classification tasks in order to share weight and
parameters since we propose that these two classification
tasks are related and can support each other by sharing. The
remaining convolution and pooling layers and fully-connected
layers are separated to focus on their specific purposes for the
classification problem. By applying this method, efficiency for
both results and time is improved.

In order to compare with PCNN, we have implemented
LSTM and HMM methods by using same plain time series
dataset and features. For HMM, each class from 8 classes has
own HMM. We trained 8 separate HMM models and the HMM
classifier is working based on winning log-likelihood output
from HMMs. Different numbers of hidden states have been
tried and three states are selected for this problem. Moreover,
the same dataset have been utilized to run LSTM consisting
biLSTM, fully connected and softmax layers. Adam is selected
as the optimizer algorithm and the data is shuffled for every
epoch.

V. EXPERIMENTS

In this work, we study an important real-world problem
of driver behavior analysis and propose a deep learning
based solution. Initially, our proposed approach is validated
on simulations, a micro-traffic simulator SUMO and robotic
simulator Webots. Then the method is also applied to the DBL
dataset.

During simulation tools, many trips were recorded with
different parameters which control aggressive driver behaviors.
A range of window sizes were used to extract a time series data
points using a sliding window approach. After windowing, the
trips are labelled automatically according to simulator features
in terms of behavior (normal/safe, aggressive) and manoeuvre
(right turn, left turn, right lane change, left lane change).
Aggressive vs normal driver behaviors are simulated by tuning
the SUMO parameters I based on documentation and previous



Parameters Normal Driver
behavior

Aggressive Driver
behavior

acc(m/s2) 2.6 3.2
decel(m/s2) 4.5 5.5
line sigma(0− 1) 0.5 0.3
maxSpeed(m/s) 23 35
minGap(m) 2.5 0.9
tau (s) 1.5 1
impatience(0− 1) 0 1
lcAssertive(0− 1) 0 0.9

TABLE I: SUMO Parameters for aggressive and normal driver
behaviors

studies [22][23][25]. Each driver type will be assigned a
specific value for minimum gap acceptance, reaction time,
acceleration and deceleration rates, maximum speed and etc.
Simulation data are generated according to randomly selected
region road map information, random vehicle distributions
and determined driver and vehicle parameters. The output of
simulation includes many features, but only position, velocity
and angle information have been utilized to apply the proposed
method, some samples of data are shown in the Figure 7. This
time series dataset are used as plain, rotated formats which
are:

• Plain Time Series without Reformatting: 2D Data out-
put taken from directly simulators. Dimensions are time
in time window (300ms) and vehicle features (speed, x,
y, angle) from simulations (4x300 for just one maneuver
sample).

• Time Series with Rotated Location x and y: Zero
centered x and y position data has high spatial variance
within single class. In order to translate this into more
informative format for any application method, we rotated
each (x,y) datapoint so that them all to be in the first
and second quadrants of the x and y coordinate plane.
Essentially we normalized the initial direction for each
maneuver to North. Figure 6 illustrates positions before
and after rotation application.

The proposed model was then applied to the selected 20
participants from DBL dataset. Position, velocity and angle
information that are coming from data are re-sampled and
labeled manually by watching driving Go-Pro video by a
researcher of the project. We have determination rules for
aggressiveness which are defined by previous studies[26],[27].
These rules which we considered to label the action as aggres-
sive are speeding, accelerating and decelerating quickly, close
following, frequent and improper lane changing, failure to
signal and failure to obey traffic signals, racing, and frequently
honking. For each action, start points are labeled manually
by using Matlab video labeler tool shown in Figure 5. Each
participant’s video is watched and labeled by the researcher
and controlled these labels after each labeling process is
done. Then, the annotator’s notes were checked before and
after the labeling process in order to catch some aggressive
drivers’ behaviors that can not be seen from the video such
as shouting or honking. After visually labeling, the actions

Aggresiveness rules Threshold
acc/decc quickly(m/s2) |ax|>3
turn quickly(rad/s) |gyroz| >1.2
speeding(km/h) > speed limit+25
close following (m) stand still distance<0.4
close following(sec) head way time<0.5
frequent lane change(/min) total numbers of lane change>8

TABLE II: Aggressive driver behaviors determination rules
and thresholds

Fig. 5: Manual labeling tool

are also controlled and labeled by automatically considering
aggressiveness rules which are defined numerically in Table II.
The same range of window sizes was used to extract a time

series of data points using a sliding window approach. After
windowing, these windows are labeled according to consisting
of aggressive behavior (normal/safe, aggressive) or maneuver
labels (right turn, left turn, right lane change, left lane change)
within these time windows.

A. Results

We first implemented four separate 2D CNN models (il-
lustrated in Figure 8) for different tasks to apply on time
series data for both simulated and real-world driven data.
Turn classification results with a single task CNN as shown
in Table III are 90.2% and 80.3% for training and testing
on the simulated dataset. Lane changing classification with
the single task CNN gives a little less than turning but still
has captured significant features from the simulated dataset
to classify. When these turn and lane-change events are
all combined into maneuvers for another single task CNN
classification, the accuracy decreases to 82.9% and 65.0%
for training and testing on the simulated dataset. Since more
classes increase the complexity of the problem, the combi-
nation of lane-changing and turn classification accuracy is
lower than only lane-changes or turn classification accuracy.
Aggressive and safe behavior classification performance are

Classification Task
Train accuracy (%)

on
Simulated Dataset

Test accuracy(%)
on

Simulated Dataset

Train accuracy(%)
on

Real Driven Dataset

Test accuracy(%)
on

Real Driven Dataset
Turns Classification 90.2 80.3 92.1 90.5

Lane-changes Classification 88.2 75.6 80.6 72.7
Behavior Classification 65.6 60.8 80.5 78.4

Manoeuvre Classification 82.9 65.0 75.3 71.1
Behavior Classification
with Manoeuvres label
added to input features

73.1 65.0 88.2 82.7

Manoeuvre Classification
with Behavior label

added to input features
89.2 70.3 78.2 75

TABLE III: Accuracy results for different tasks using just the
single task CNN on time series datasets.



Fig. 6: Zero centered vehicle x and y position data samples
for 300 time window from the Dataset: Left side plotting shows left
turning maneuvers’ x and y location data from Simulator, right side plotting
illustrates right turning maneuvers’ positions. Rotated vehicle x and y position
data samples for 300 time window from the Simulated Dataset

Fig. 7: Vehicle angle of Right turn sequences and Aggressive
Right turn sequences from the Simulated Dataset: Plots shows
time vs angle data for right turning maneuvers. In aggressive right turn, most
of the angles are more sharply changing and waving and also event time is
smaller than the non-aggressive one in general.

65.6% in training and 60.8% in testing because this CNN
classification is more challenging task compared to others.
When we include all 8 classes together, this classification
task even becomes even more complex and the accuracy
decrease to 70% and 61%, training and testing respectively,
see Table IV. When single task CNN models are fed with
labels of other classification classes, classification accuracies
rise up. For example, if aggressiveness classification samples
include maneuver labels, the classification efficiency shows a
remarkable increase from 80.5% to 88.2% in training accuracy
on the real-world driven dataset. The results illustrate that the
applied CNN classifications can improve their performance by
adding other task labels as a feature set on input. We can infer
from these results, PCNN can serve our purpose which is to
show that high level of features derived from different tasks
can support each other.

The PCNN model has been applied on simulated time
series in order to classify these 8 classes. PCNN has improved
accuracy results from 60.6% (single CNN model accuracy
result) to 65.7% which suggests that sharing the early layers

Fig. 8: 2D CNN model for single task

Fig. 9: PCNN classification on rotated time series of simu-
lated data accuracy and loss vs epochs plotting: The figures at the
top show maneuvers classification accuracy and loss plotting in PCNN, The
figures at the bottom illustrate aggressive and normal behavior classification
accuracy and loss plots in PCNN.

helps to improve accuracy in general. The comparison of
accuracy results table illustrates that the LSTM method is
not working as well as PCNN in terms of general accuracy,
but when investigating from confusion matrix, for two classes
(normal right turn and aggressive right lane-change), we find
that LSTM works better than PCNN. Also, LSTM takes
longer to train than PCNN. Similarly, while HMM does not
work to detect aggressive maneuvers classes (general accuracy
is approximately 20%), it gives the highest single accuracy
for normal left and right turns classification among CNN,
PCNN, and LSTM. However, we found that HMM results
were very sensitive to any small changes in parameters. In
general, CNN and PCNN are more efficient methods to detect
essential features from aggressive behaviors comparing to the
other methods considering both accuracy and cost. Moreover,
a different feature engineering technique is applied on the
simulated time series, that is angle of rotation to x and y
locations. PCNN is applied on time series data which consists
of these rotated locations, speed, and angle. This leads to
significant improvement in results. Considering all 8 classes
including both tasks, test accuracy jumps from 65.7% to 95%
when position data rotated to a determined quadrant. The
PCNN classification on different versions of dataset F-score
results is shown in Table V. This f-score results are means
of validated model by training PCNN model 10 times on
simulated dataset. For each single training, randomly 20%



Fig. 10: PCNN classification on real driven dataset accuracy
and loss vs epochs plotting: The figures at the top show maneuvers
classification accuracy and loss plotting in PCNN, The figures at the bottom
illustrate aggressive and normal behavior classification accuracy and loss plots
in PCNN.

Method Train accuracy(%) Test accuracy(%)
CNN 69.5 60.6

PCNN 71.8 65.7
LSTM 65.8 58.13
HMM 55.28 51.22
SVM 63.4 60.5

TABLE IV: General accuracy results of classification for 8
classes together with various models applied on whole plain
simulated time series dataset.

of selected for testing, from the training set 20% has been
selected for validation. The early stopping point is determined
as 11 epochs and 100 sample sequences has been used for an
epoch. Datasets which are applied of different window sizes
(300 and 200) has also been compared in this table. In order to
prevent overfitting, the best epoch number for training PCNN
can be selected between 10 and 15 based on accuracy and loss
results which are shown in Figure 9.

After that, the PCNN model is performed on time series data
from DBL. Location, speed and heading angle information
are utilized as input. While CNN shows great performance
in accuracy for single task, PCNN gives significant results
in accuracy for multi tasks on DBL. These results indicates
that CNN has ability to gather high level information from
time series efficiently. PCNN multitask classification model’s
accuracy/loss vs epoch plot at Figure 10 illustrates that 99%
accuracy in behavior classification, 86% accuracy in maneuver
classification for 3 sec window size. Stopping epoch numbers
can be selected from between 40 and 60 based on these plots as
well. The PCNN classification on different versions of DBL
dataset F-score results is shown in Table V. These f-score
results are means of validated model by training 10 times
PCNN model on the dataset.

Method
Manoeuvre

Classification
F1 score

Behavior
Classification

F1 score

Manoeuvre
Classification

F1 score

Behavior
Classification

F1 score
Time window size 3sec 3sec 2sec 2sec

PCNN
Simulated Time Series Data 0.75 0.65 0.72 0.51

PCNN
on Simulated Time Series Data

with Rotated x and y
0.97 0.94 0.96 0.90

PCNN
on DBL Time Series Data 0.87 0.98 0.85 0.95

TABLE V: PCNN application results comparison table on the
different type of simulated data

VI. CONCLUSION

The contributions of this paper are: (1) Introduction of
automated data production by the SUMO and Webots sim-
ulators for a set of random road configurations and various
driver behaviors, (2) Real-world driving dataset application,
(3) Applying CNNs on time series for driver behavior analysis,
and (4) Introduction of a parallel CNN architecture with a
shared early stage and split later stages for dual training
of behavior and maneuver classifiers. We proposed Parallel
Convolutional Neural Networks to classify aggressive driver
behaviors together with maneuver classification. Two CNNs
in the proposed method were trained and tested separately on
large simulated and real-world driving datasets. These experi-
ments show that these CNN models are able to capture high-
level features to differentiate driving maneuvers and aggressive
driver behaviors. Moreover, the results illustrate that CNN
classifications can work in parallel and can support each others
efficiently. This initial step was important for designing PCNN
to build driving assist systems using embedded smartphone
sensors. As a future work, the plan is to apply the designed
PCNN to entire DBL dataset which includes 61 participants.
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[3] Q. Deng and D. Söffker, “A review of the current hmm-based approaches
of driving behaviors recognition and prediction,” IEEE Transactions on
Intelligent Vehicles, 2021.

[4] R. Fuller, “Towards a general theory of driver behaviour,” Accident
Analysis & Prevention, vol. 37, no. 3, pp. 461–472, 2005.
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