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Abstract
Conventional supervised learning methods typi-
cally assume i.i.d samples and are found to be
sensitive to out-of-distribution (OOD) data. We
propose Generative Causal Representation Learn-
ing (GCRL) which leverages causality to facili-
tate knowledge transfer under distribution shifts.
While we evaluate the effectiveness of our pro-
posed method in human trajectory prediction mod-
els, GCRL can be applied to other domains as
well. First, we propose a novel causal model that
explains the generative factors in motion forecast-
ing datasets using features that are common across
all environments and with features that are spe-
cific to each environment. Selection variables are
used to determine which parts of the model can be
directly transferred to a new environment without
fine-tuning. Second, we propose an end-to-end
variational learning paradigm to learn the causal
mechanisms that generate observations from fea-
tures. GCRL is supported by strong theoretical re-
sults that imply identifiability of the causal model
under certain assumptions. Experimental results
on synthetic and real-world motion forecasting
datasets show the robustness and effectiveness
of our proposed method for knowledge transfer
under zero-shot and low-shot settings by substan-
tially outperforming the prior motion forecasting
models on out-of-distribution prediction.

1. Introduction
Human Trajectory Prediction (HTP) is a valuable task in
many applications such as infrastructure design, traffic op-

1Department of Electrical and Computer Engineering, Uni-
versity of Waterloo, Waterloo, Canada 2Department of Systems
Design Engineering, University of Waterloo, Waterloo, Canada
3School of Computing Science, Simon Fraser University, Burn-
aby, Canada. Correspondence to: Shayan Shirahmad Gale Bagi
<sshirahm@uwaterloo.ca>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

erations, crowd abnormality detection systems, evacuation
situation analysis, and autonomous vehicles (Kothari et al.,
2022). It is also more challenging compared to other types
of agent trajectory prediction, such as vehicles, due to the
complex behaviour of humans in different environments.
Most of the proposed models in the literature of motion fore-
casting (Gupta et al., 2018; Kosaraju et al., 2019; Mangalam
et al., 2020; Lee et al., 2017; Huang et al., 2019; Mohamed
et al., 2020; Salzmann et al., 2020) rely on statistical in-
ference, which has two important shortcomings. First, the
learnt representations are not explainable and, therefore, are
ineffective to transfer into a new environment. Secondly,
statistical inference is susceptible to learn spurious correla-
tions, which can significantly degrade the performance of
the models in presence of a domain shift or measurement
noise (Liu et al., 2022). In this work we aim to tackle these
shortcomings from a causality perspective.

Causal representation learning has attracted much attention
in various applications (Liu et al., 2021; Zhang et al., 2020a;
Schölkopf et al., 2021; Liu et al., 2022). Causal inference
eliminates the confounding bias in predictions, (Pearl et al.,
2016) which is a common phenomenon in motion forecast-
ing since inputs and targets come from the same interde-
pendent time series. Furthermore, models based on causal
inference learn meaningful features that do not rely on spu-
rious correlations. The coexistence of target trajectories and
observation noise, is an example of spurious correlation in
motion forecasting (Liu et al., 2022). Causality can also
identify the generative factors in the dataset (Suter et al.,
2019). Physical laws, social norms, and motion styles are ex-
amples of generative factors in HTP. Under covariate shifts,
a model that learns the causal structure of the data would
require many fewer samples to adapt to the new environ-
ment because most of the modules can be reused without
further training. This expectation is consistent with the
Sparse Mechanism Shift hypothesis in causal representation
learning (Schölkopf et al., 2021).

To this end, we propose Generative Causal Representation
Learning (GCRL) that leverages causality to increase the
identifiability and robustness of current motion forecasting
models. While our target application is motion forecasting,
our proposed solution can be applied to domain adapta-
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tion in other applications. Oftentime, the training dataset
is collected from different locations such as the ETH-UCY
dataset (Lerner et al., 2007; Pellegrini et al., 2010). Con-
sidering this, we introduce a causal model that includes the
invariant features, which are common across all types of
environments, and variant features, which are environment-
specific. Our causal model includes selection variables
(Pearl & Bareinboim, 2014) to directly transfer some parts
of the model to a new domain without fine-tuning. Second,
we propose a new learning paradigm that can learn invari-
ant and variant features simultaneously and eliminate the
confounding bias using a backdoor adjustment (Pearl et al.,
2016). Previous work (Liu et al., 2022) uses Invariant Risk
Minimization (IRM), (Arjovsky et al., 2019) which requires
solving a very complex minimization problem. Third, our
proposed method uses a generative process to infer latent
representations, which can capture multi-modal trajectory
distributions, without adding any noise to the representa-
tions as proposed in (Huang et al., 2019).

Contributions Our key contributions can be summarized
as follows:
(1) A learning paradigm which enables end-to-end train-
ing and eliminating confounding bias.

(2) Augmented causally factorized model to enable direct
transportability and reusability of some parts of the model.

(3) A generative process to produce latent representations
to tackle multi-modality of trajectories.

Our code is available at
https://github.com/sshirahmad/GCRL.

2. Related Work
2.1. Causal Representation Learning
As pointed out in (Teshima et al., 2020), a transfer assump-
tion is required in domain adaptation. Most of the methods
in computer vision applications have parametric distribution
families, hence, it is assumed that domain shifts affect the
parameters of the distributions. Similar to our approach,
INFER (Zhang et al., 2020b) uses an augmented version
of Directed Acyclic Graphs (DAGs) to represent the casual
structure of data. Their method assumes that the targets
are not available in the test domain and perform unsuper-
vised domain adaptation (DA) using a conditional GAN.
CAE (Yang et al., 2021) proposes an end-to-end framework
to jointly learn a model for causal structure learning and
a deep autoencoder model. Markov Blanket features (Yu
et al., 2020) are then extracted from the learnt causal model
to be used in the test domain. CSG (Liu et al., 2021) lever-
ages the Independent Causal Mechanisms (ICM) principle
(Schölkopf et al., 2021) to learn the causal model for image
classification task. In CSG, covariate shift is assumed to
manifest itself in the priors of the latent variables in the form
of spurious correlations.

CONTA (Zhang et al., 2020a) tackles the confounding bias
in causal models by using the backdoor criterion (Pearl et al.,
2016) for image segmentation task. To obtain invariant con-
ditional distributions applicable in the test domain (Magli-
acane et al., 2018) uses the selection diagrams. CGNN
(Goudet et al., 2017), on the other hand, applies maximum
mean discrepancy between the generated distribution by a
set of generative models and true distribution of the data
to approximate the causal model of the data. DAG-GNN
(Yu et al., 2019) uses a variational autoencoder to learn the
adjacency matrix of the DAG that is supposed to represent
the causal model of the data. In (Ke et al., 2019), the causal
structure is learnt from both observational data and unknown
interventions. In (Suter et al., 2019), causal disentanglement
is studied and a set of metrics are introduced to measure the
robustness of the learnt features.

Most of these methods attempt to learn the causal model of
the data, however, in motion forecasting we can hypothesize
a causal model based on the domain knowledge. Further-
more, identifying true causal model of the data is extremely
challenging and impossible in an unsupervised setting with
observational data (Locatello et al., 2019). Hence, the pre-
vious methods have not investigated causal discovery in
real-world time-series data, which has exclusive challenges.

2.2. Motion Forecasting
Most of the deep-learning based motion forecasting models
consist of an Encoder, an Interaction module, and a Decoder,
(Kothari et al., 2022) which we will refer to as EID archi-
tecture. STGAT (Huang et al., 2019) uses a graph attention
network to model the human-human interactions and LSTM
cells to encode past trajectories and to predict future trajec-
tories. On the other hand, STGCNN (Mohamed et al., 2020)
consist of CNN layers only which significantly improves
inference speed while performing on par with its RNN coun-
terparts in terms of prediction error. Social-GAN (Gupta
et al., 2018) focuses on the multi-modality of human trajec-
tories and uses GANs to generate multiple future trajectories
per sample. Social-BiGAT (Kosaraju et al., 2019) models
both social and physical interactions using images of the
environment and trajectories of pedestrians. DESIRE (Lee
et al., 2017) proposes a conditional variational autoencoder
(CVAE) to tackle the multi-modality of human trajectories.
Trajectron++ (Salzmann et al., 2020) focuses on the dy-
namic constraints of agents when predicting trajectories
and models not only the interactions between humans but
also interactions of humans with other agents in the scene.
PECNet (Mangalam et al., 2020) uses a CVAE to obtain a
distribution for the endpoints of the pedestrians, which is
employed to predict the future trajectories conditioned on
the endpoints. According to the recent works (Liu et al.,
2022; Chen et al., 2021), there are varying types of noise and
intrinsic biases in the data resulting from human behaviour
in different environments. The performance of the current
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motion forecasting models is negatively affected when trans-
ferred to a new environment or in the presence of a noise
(Liu et al., 2022). Furthermore, there are some confounding
factors in motion forecasting applications, which can lead to
biased predictions (Chen et al., 2021). Our work focuses on
the robustness aspect of the motion forecasting problem. We
propose a method applicable to motion forecasting models
with an EID architecture, which will be discussed in the
following sections.

3. Proposed Method
3.1. Formalism of Motion Forecasting
Consider a motion forecasting problem in a multi-agent
environment with M agents. Let’s denote the states of the
agents as St = {s1t , s2t , ..., sMt } where sit = (xi

t, y
i
t) are

the 2D coordinates of agent i at time t. The objective is to
predict the states of agents Tpred time steps into the future
from observations of the previous Tobs time steps. The
model takes as input Xi = {s1, s2, ..., sTobs

} and predicts
Y i = {sTobs+1, sTobs+2, ..., sTobs+Tpred

} for every agent i.

Figure 1: The proposed causal model (center). Filled circles
are observed variables and empty shapes are the unobserved
variables. X and Y represent past trajectories and future
trajectories to be predicted, respectively. Z represents in-
variant features common across domains, such as physical
laws, while S represents variant features specific to each en-
vironment, such as motion styles. Finally, E is the selection
variable. Conditioning on E allows us to switch between
environments.

Deep learning based motion forecasting models are often
composed of three modules; an encoder, an interaction mod-
ule and a decoder (Kothari et al., 2022). The encoder takes
previously observed states Xi and produces representations
of the observed states. The interaction module receives the
representations from the encoder to capture the social inter-
actions (human-human), the physical interactions (human-
space), or both. Eventually, the decoder takes as input, the
interaction vectors and predicts the future states of the agent
Y i. It is worth mentioning that any type of neural network,
which can handle sequence-to-sequence modeling such as
Recurrent Neural Networks (RNNs) or temporal Convolu-
tional Neural Networks (CNNs) could be employed as the
Encoder and the decoder of the model.

Training data is usually collected from a set of K environ-

ments or domains, E = {e1, e2, ..., ek}. An example set
of environments could be ‘Pedestrians crossing an inter-
section’, ‘People standing in front of a department store’,
or ‘Pedestrians walking along the sidewalk’. In real-world
datasets, it is common for the training and test environments
to differ significantly (Chen et al., 2021), such as in the
widely-used ETH-UCY benchmark. Therefore, the i.i.d
assumption does not always hold in practice and Empiri-
cal Risk Minimization (ERM) techniques cannot be used
to train the neural networks. In the following section, we
briefly present some concepts of causality applied in our
proposed method.

3.2. Background in Causality
Structural Causal Models (SCMs) are a way of describing
causal features and their interactions, which are represented
by Directed Acyclic Graphs (DAG) (Pearl et al., 2016). We
say that X is a direct cause of Y when there is a directed
edge from X to Y in the DAG. The cause and effect relation
X → Y tells us that changing the value of X can result
in a change in the value of Y , but that the reverse is not
true. A causal model receives as inputs a set of qualitative
causal assumptions (A), a set of queries concerning the
causal relations among variables (Q), and experimental or
non-experimental data (D), presumably consistent with (A).
A causal model makes predictions about the behavior of
a system. The outputs of a causal model are then a set
of logical implications of (A), data-dependent claims (C)
represented by the magnitude or likelihoods of the queries
(Q), and a list of testable statistical implications (T) (Pearl
& Bareinboim, 2014).

A major drawback of deep learning models using statisti-
cal inference is that they do not consider the confounding
bias. Normally, we would predict p(Y |X), however, in the
presence of confounding variables, p(Y |X) cannot capture
the true causal effect of X on Y and the predictions will
be erroneous. Therefore, we are interested in the causal
query p(Y |do(X)) which eliminates the confounding bias
by surgically intervening on X . This causal query can be
calculated using the Backdoor Criterion (Pearl et al., 2016).
Our set of causal assumptions are causal sufficiency and
faithfulness (Yu et al., 2020). Since we do not assume i.i.d
samples, we use an augmented version of causal models
called Selection Diagrams (Pearl & Bareinboim, 2014) to
discriminate between samples of different domains. Selec-
tion variables S are introduced to model the variations in
each domain. Every member of S corresponds to a mecha-
nism by which the two populations differ. Therefore, we can
condition on the values of S for switching between domains
(Pearl & Bareinboim, 2014).

3.3. Causal Formalism
Our proposed SCM for motion forecasting is shown in Fig-
ure 1. There are two causal variables in motion forecasting,
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that can affect the trajectories of the pedestrians: invariant
features and variant features (Liu et al., 2022). Invariant
features do not vary across domains but can influence the
trajectories of the pedestrians. These features can be associ-
ated with physical laws, traffic laws, social norms, and etc.
In contrast, variant features vary across domains and can
be associated with the motion styles of the pedestrians in
an environment (Liu et al., 2022). In our proposed causal
model we consider four endogenous variables: S to repre-
sent variant features, Z for invariant features, X for past
trajectories, and Y for future trajectories.

We also introduce an additional exogenous variable E
as the selection variable (Pearl & Bareinboim, 2014) to
account for the changing factors in each environment. The
selection variable acts as an identifier of an environment
such that the conditional probability of p(X,Y |E = e1)
represents the distribution of the samples in an environment
having the selection variable of e1. In other words, we
assume that all members of the dataset are sampled from
a parent distribution over X , Y , and E. Furthermore, we
assume that the proposed model is causally sufficient. That
is, it explains all the dependencies without adding further
causal variables. To build a causal graph, we reason about
causal edges connecting the causal variables:
(1) There should be an edge from S to X and Y because
motion styles can influence the speed of the pedestrians.
(2) There should be an edge from Z to X and Y because
social norms can influence how closely pedestrians move
next to each other.
(3) There should be an edge from X to Y because the
location in the past determines where the pedestrian is
going to be in the future.
(4) S varies in each domain, hence, there should be an
edge from selection variable E to S to account for all the
changing factors in each domain.

3.4. Learning Latent Variables with Variational
Inference

According to Figure 1, S and Z confound the causal effect
of X on Y and the backdoor paths are Y ← S → X and
Y ← Z → X . Therefore, we need to use the backdoor
criterion to eliminate the confounding effect. To this end,
the causal effect of X on Y (i.e., p(Y |do(X))) is calculated.
Before calculating this causal query, we need to recall the
S-admissibility criterion:

Definition 3.1. “A set T of variables satisfying (Y ⊥⊥
S|T,X) in DX̄ will be called S-admissible (with respect to
the causal effect of X on Y ).” (Pearl & Bareinboim, 2014)

Where DX̄ denotes an augmented SCM in which we inter-
vene on X (i.e., the arrows entering X are deleted). Accord-
ing to this definition, in Figure 1, the set {S} will be an
E-admissible set, which means once we know about S, the

predictions (Y ) will not be dependent on the environment
(E) we’re in.

We can now proceed to calculate p(Y |do(X)):

p(Y |do(X), E = ei)

=

∫
p(Y |X,S,Z,E)p(S|E)p(Z|E)dsdz

=

∫
p(Y |X,S,Z)p(S|E)p(Z)dsdz

= Ep(S|E),p(Z)[p(Y |X,S,Z)],

(1)

where p(Y |do(X), E = ei) is the causal effect of X on Y
in environment i. The first line follows from the backdoor
criterion and the second line follows from the fact that S
is E-admissible (Pearl & Bareinboim, 2014) and X is a
collider. Equation 1 implies that in order to calculate the
causal effect of X on Y in every environment, we need to
stratify over S and Z. Although we don’t know the true
posterior of the latent variables, we will approximate them
using mean-field variational inference (Goodfellow et al.,
2016).

The standard log-likelihood to train the model is given by:

max
p

Ep∗(x,y)[log p(x, y)] (2)

where p∗(x, y) is the distribution of samples in the
dataset. Calculating p(x, y) is intractable since p(x, y) =∑

e∈E

∫
(p(x, y, s, z, e)dsdz where E is the set of environ-

ments. Mean-field variational inference is used to approxi-
mate the true posterior distribution of latent variables.

For this purpose, the Evidence Lower Bound (ELBO) func-
tion is used to train the model:

max
p,q

Ep∗(x,y)

[
Eq(s,z,e|x,y)

[
log

p(x, y, s, z, e)

q(s, z, e|x, y)

]]
(3)

Theoretically, the ELBO function will drive q(s, z, e|x, y)
towards its target p(s, z, e|x, y) and the objective function
in Equation 3 will become Equation 2. The approximate
model is still intractable because we don’t have access to the
future trajectories in the test domain. Therefore, we replace
it with q(s, z, e, y|x) and the loss function becomes:

max
p,q

Ep∗(x)Ep∗(y|x)[log q(y|x)]+

Ep∗(x)

[
Eq(s,z,e,y|x)

[
p∗(y|x)
q(y|x)

log
p(x, y, s, z, e)

q(s, z, y, e|x)

]] (4)

Assuming that q(y|x) is Gaussian, the first term in the loss
function of Equation 4 would be the negative of Mean
Squared Error (MSE). Eventually, this term will drive q(y|x)
towards p∗(y|x) and the second term will become a lower
bound of log p(x) as stated in Theorem 3.2, which we prove
below.
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Theorem 3.2. Let p(x, y, s, z, e) be the joint distribution
of latent and observed variables and q(s, z, y, e|x) be the
approximate posterior of latent variables and future trajec-
tories given the past trajectories in GCRL, a lower bound
on the log-likelihood of past trajectories is:

Eq(s,z,e,y|x)

[
log

p(x, y, s, z, e)

q(s, z, y, e|x)

]
≤ log p(x)

Proof. According to the Causal Markov condition
(Schölkopf et al., 2021), we can factorize q(s, z, e, y|x) =
q(y|x, s, z)q(z|x)q(s|x, e)q(e|x) and p(x, s, z, y, e) =
p(y|x, s, z)p(x|s, z)p(s|e)p(z)p(e). The first approximate
model, q(y|x, s, z), can be replaced with p(y|x, s, z) since
it is known. Secondly, since q(s|x, e) is an approximation
of its true posterior, we assume it to be q(s|x). Therefore:

Eq(s,z,y,e|x)

[
log

p(x, y, s, z, e)

q(s, z, y, e|x)

]
=

Eq(s,z,e|x)

[
log

p(x|s, z)p(s|e)p(z)p(e)
q(z|x)q(s|x)q(e|x)

]
=

Eq(s|x),q(z|x) [log p(x|s, z)]−
KL(q(z|x)||p(z))−KL(q(s|x)||p(s))−
KL(q(e|x)||p(e|s)) ≤ log p(x)

(5)

The detailed proof is given in Appendix A.

As shown in Equation 5, q(e|x) will be driven towards
p(e|s), hence, it is sensible to model q(e|x) with p(e|s).
By leveraging the Causal Markov condition and replacing
q(e|x) with p(e|s), we can obtain a lighter inference model
(q) and the loss function in Equation 4 becomes:

max
p,q

Ep∗(x,y)

[
log q(y|x) + 1

q(y|x)

Eq(s|x),q(z|x)

[
p(y|x, s, z) log p(x|s, z)p(s)p(z)

q(s|x)q(z|x)

]]
,

(6)

where p(s) =
∑

e∈E p(s|e)p(e) which means that
S has a Gaussian mixture prior and q(y|x) =
Eq(s|x),q(z|x)[p(y|x, s, z)] = p(y|do(x)) which can be cal-
culated by ancestral sampling. The expectations in Equation
6 can be estimated using the Monte-Carlo method after
applying the re-parametrization trick (Kingma & Welling,
2014). Consequently, GCRL learns: (1) To minimize the dis-
tance between groundtruth future trajectories and predicted
future trajectories via maximizing log q(y|x), (2) To elimi-
nate the confounding effect by estimating the causal effect of
X on Y via p(y|do(x)), (3) To reconstruct past trajectories
via maximizing log p(x|s, z), (4) Invariant representations
via maximizing log p(z)

q(z|x) , (5) Variant representations via

maximizing log p(s)
q(s|x) . Furthermore, since GCRL learns to

predict the future trajectories with a generative approach, it
can tackle the multi-modality of trajectories.

Gaussian Mixture priors have been previously used in pop-
ular VAE models (Jiang et al., 2017; Johnson et al., 2016).
Variational models are susceptible to poor local minima and
posterior collapse, it is important to show the identifiability
of latent variables (Kivva et al., 2022). Variational models
with GMM priors are proven to be identifiable (Kivva et al.,
2022), hence, using a Gaussian Mixture prior for S aligns
with the theory as well. Furthermore, Gaussian Mixture
Models (GMMs) are universal approximators, hence, q(s|x)
will be capable of producing arbitrary variant features. To
obtain a better likelihood for latent variables, we use cou-
pling layers (Dinh et al., 2017) to learn rich priors p(s|ei)
and p(z) from simple priors such as standard Normal distri-
butions. These priors are referred to as flow priors and are
also used in VAEs (Xu et al., 2019).

A general overview of our model is shown in Figure 2. The
encoded past trajectories are used to model the approximate
posteriors of the latents. We sample from these posteriors
to reconstruct the past trajectories and predict the future
trajectories. As shown in Figure 2, any motion forecast-
ing model with an EID architecture can be used with our
method provided that the decoder is a piece-wise affine in-
jective function as this is required to obtain the weakest
form of identifiability (i.e., identifiability up to an affine
transformation (Kivva et al., 2022)).

3.5. Domain Adaptation Method
After learning the causal mechanisms and causal vari-
ables using Equation 6, we know that q(z|x) will gener-
ate representations with a single Gaussian distribution and
q(s|x) will generate representations with a Gaussian Mix-
ture Model (GMM) distribution. Therefore, as illustrated
in Figure 3, all representations generated by q(z|x) will be
in the same range, whereas the representations of q(s|x)
will form clusters, each modeled by a component of the
GMM. Since Z is invariant, we can directly transfer it to the
new domain without any fine-tuning. However, S can be
interpreted as a weighted sum of the representations learnt
from different environments of the training domains, which
may be used in the test domains as well. Depending on how
related the test domains are to the training domains, we may
need to fine-tune the components of the GMM and obtain a
new prior for S. Thus, to fine-tune the model at inference
time, we reuse the loss function in Equation 6 without the
regularizing Z posterior by omitting q(z|x). Eventually,
q(s|x) will be driven towards the new prior and compen-
sate for the domain shift in the test domain. The models
to predict future trajectories p(y|x, s, z) and to reconstruct
past trajectories p(x|s, z) also needs to be fine-tuned as the
samples of q(s|x) will be updated.
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Figure 2: A general overview of the proposed method. The approximate posteriors of the latents are estimated using the
encoded past trajectories and the priors of the latents are calculated using the coupling layers. The encoder, interaction
module, and decoder of the model can be replaced by motion forecasting models that use an EID architecture.

Consequently, we only fine-tune the models of q(s|x), p(s),
p(y|x, s, z), and p(x|s, z) while the models for, p(z), and
q(z|x) can be arbitrarily complex as it is not required to
fine-tune them in the test domain, but all the other models
should be as simple as possible.

Figure 3: The priors of variant and invariant features. Ei

represents environment i.

4. Experiments
In our experiments we evaluate our models using two met-
rics often used in evaluation of the motion forecasting mod-
els:

ADE =

∑n
i=1

∑Tpred

t=Tobs+1((x̂
t
i − xt

i)
2 + (ŷti − yti)

2)
1
2

n(Tpred − (Tobs + 1))
(7)

FDE =

∑n
i=1((x̂

Tpred

i − x
Tpred

i )2 + (ŷ
Tpred

i − y
Tpred

i )2)
1
2

n
,

(8)
where x̂t

i and ŷti are the predicted horizontal and vertical
coordinates of the pedestrian at time step t, while xt

i and

yti are the actual horizontal and vertical coordinates of the
pedestrian at time step t.

4.1. Datasets
ETH-UCY dataset This dataset contains the trajectory of
1536 detected pedestrians captured in five different environ-
ments {hotel, eth, univ, zara1, zara2}. All trajectories in
the dataset are sampled every 0.4 seconds. Following the
experimental settings of (Liu et al., 2022; Chen et al., 2021;
Huang et al., 2019), we also use a leave-one-out approach
for training and evaluating our model so to predict the future
4.8 seconds (12 frames), we utilize the previously observed
3.2 seconds (8 frames).

Synthetic dataset This dataset published in (Liu et al.,
2022) contains the trajectories of pedestrians in circle-
crossing scenarios (Chen et al., 2019) where the minimum
separation distance of pedestrians differ in each domain.
There are 8 domains in the dataset with separation distances
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8} meters. Each domain
contains 10,000 trajectories for training, 3,000 trajectories
for validation, and 5,000 trajectories for testing.

4.2. Robustness
To evaluate the robustness of our model in the presence of
spurious correlations, we compare our method with (Liu
et al., 2022; Chen et al., 2021). For a fair comparison,
we use the STGAT (Huang et al., 2019) as our baseline
model. Although, ETH-UCY contains five environments,
it is not trivial to pinpoint the shifts in each environment.
Therefore, we add a third dimension to the coordinates of
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Table 1: Robustness of different methods in the ETH-UCY dataset with controlled spurious correlation.

METHOD ADE/FDE ADE/FDE ADE/FDE ADE/FDE
α = 8 α = 16 α = 32 α = 64

BASELINE (HUANG ET AL., 2019) 0.80/1.37 2.15/3.80 2.64/4.44 2.68/4.48
COUNTERFACTUAL (CHEN ET AL., 2021) 0.80/1.59 1.62/2.68 2.32/3.90 2.68/4.52
INVARIANT λ = 1.0 (LIU ET AL., 2022) 0.94/1.65 1.04/1.76 1.52/2.55 1.96/3.35
INVARIANT λ = 3.0 (LIU ET AL., 2022) 0.91/1.67 0.99/1.87 1.18/2.20 1.27/2.33
INVARIANT λ = 5.0 (LIU ET AL., 2022) 0.98/1.79 1.00/1.83 1.06/1.90 1.56/2.58
GCRL (OURS) 0.97/1.8 0.97/1.8 0.97/1.8 0.97/1.8

the pedestrians, which measures observation noise and is
modeled as in (Liu et al., 2022):

γt := (ẋt+δt − ẋt)
2 + (ẏt+δt − ẏt)

2

σt := α(γt + 1),
(9)

where ẋt = xt+1 − xt and ẏt = yt+1 − yt reflect the
velocity of the pedestrians within the temporal window
length of δt = 8 and α is the noise intensity. For the
training domains α ∈ {1, 2, 4, 8} while for the test domain
α ∈ {8, 16, 32, 64}. The test domain is the eth environ-
ment for this experiment. Since the value of α for the third
input dimension in training domains were {1, 2, 4, 8}, the
samples of the test domain with α ∈ {16, 32, 64} can be
considered as out-of-distribution samples. To evaluate other
methods in presence of observation noise, we have used the
publicly available code from (Liu et al., 2022). The results
in Table 1 demonstrate the robustness of our method against
observation noise while performing comparably with other
motion forecasting models for low α. Since our proposed
method also learns to reconstruct inputs, it eliminates the
effect of noise by reconstructing uncorrupted inputs, hence,
it is not sensitive to noise.

In real-world scenarios, multiple factors affect the data dis-
tribution simultaneously. Therefore, it is also useful to disen-
tangle these changing factors and evaluate the robustness of
GCRL in different environments with different noise intensi-
ties. As shown in Table 2, GCRL is robust in environments
where there are multiple changing factors.

4.3. Domain Generalization
In this experiment, we evaluate the generalizability of our
proposed method using the synthetic dataset (Liu et al.,
2022). We will refer to (Liu et al., 2022) as IM in the
remainder of the paper. For a fair comparison with IM,
we use a PECNet (Mangalam et al., 2020) variant as our
base model, train the model with five seeds and report the
mean and standard deviation of the results. We will use
the PECNet variant as our base model in the subsequent
experiments. The Minimum Separation Distances (MSD)
in the training and test domains are {0.1, 0.3, 0.5} and

Figure 4: Comparison of ADE/FDE for different values of
N .

{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8} meters, respectively.

Since GCRL is a generative approach, we can generate mul-
tiple future trajectories per sample and select the best of
them to tackle the multi-modality of trajectories as prac-
ticed in (Gupta et al., 2018; Huang et al., 2019; Chen et al.,
2021). Therefore, we use a hyper-parameter N in testing to
determine the number of generated trajectories per sample.
Figure 4 illustrates the significant impact that a generative
approach can have in the performance. According to Fig-
ure 5, the qualitative results also suggest that a generative
approach can be useful in motion forecasting as it is able to
generate diverse trajectories. We will use N = 100 in the
following experiments.

As illustrated in Figure 6, our method is more robust to
domain shifts compared to IM, and it is achieving slightly
better ADE, which is 8.8% on average. It is evident that for
OOD-Inter cases where the test domain shift is within the
range of training domain shifts e.g., test domain shift=0.4,
GCRL is reusable since ADE is insensitive to the domain
shifts. On the other hand, for the test domain shifts out of
the range of training domain shifts, the OOD-Extra cases,
the model needs to be fine-tuned.
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Table 2: GCRL performance in cases with multiple changing factors.

METHOD ADE/FDE ADE/FDE ADE/FDE ADE/FDE
α = 8 α = 16 α = 32 α = 64

ETH 0.97/1.8 0.97/1.8 0.97/1.8 0.97/1.8
HOTEL 0.64/1.3 0.64/1.3 0.64/1.3 0.64/1.3
UNIV 0.53/1.15 0.53/1.15 0.53/1.15 0.53/1.15

ZARA1 0.4/0.86 0.4/0.86 0.4/0.86 0.4/0.86
ZARA2 0.31/0.66 0.31/0.66 0.31/0.66 0.31/0.66

(a) Scene 1 (b) Scene 2

(c) Scene 3 (d) Scene 4

Figure 5: Trajectories of pedestrians in different scenes.
The circled trajectories are observed, the dashed trajectories
are predicted, and the starred trajectories are groundtruth.
In all of the scenes, 100 trajectories are predicted for each
pedestrian.

4.4. Domain Adaptation
In this experiment, we evaluate the efficiency of our pro-
posed method in knowledge transfer using the synthetic
dataset for an OOD-Extra case. We train IM and GCRL
with the previous setting and fine-tune different components
of the model using a small number of batches from the test
domain. The batch size is 64, hence, the number of samples
used in fine-tuning will be {1, 2, 3, 4, 5, 6}×64. For IM, we
fine-tune it using the best setting reported in the paper. For
GCRL, we fine-tune our models for p(y|x, s, z), p(x|s, z),
p(s) and q(s|x).

As shown in Figure 7, GCRL adapts to the new environment
faster than IM and it is more robust to OOD-Extra shifts.
GCRL improves the ADE by 34.3% from IM on average.

4.5. Identifiability
To evaluate the identifiability of S and Z, we train GCRL
with five different seeds on the synthetic dataset. With a
GMM prior and a piecewise-affine injective decoder, iden-
tifiability up to an affine transformation can be achieved.

Figure 6: Domain generalization with different style domain
shifts. The mean and standard deviation of ADEs are calcu-
lated and plotted for 5 seeds.

Therefore, we calculate Mean Correlation Coefficient
(MCC) between pairs of learnt latents before and after apply-
ing an affine transformation f , which we refer to as Strong
MCC and Weak MCC, respectively. f can be learnt via
least-squares minimization.

The results in Table 3 support the identifiability of S as
expected. Z, however, is not identifiable from observed tra-
jectories and more data from the environments is required.
This finding also aligns with the capability of past trajecto-
ries in explaining the features that Z is supposed to repre-
sent such as physical laws. For example, in order to learn
that pedestrians avoid obstacles in their paths, one needs
to provide images of the environments. Despite the poor
identifiability of Z, the empirical results in the next section
indicate the invariance of Z across domains.

Table 3: MCC of S and Z after and before applying an
affine transformation.

WEAK WEAK STRONG STRONG

MCC OF S MCC OF Z MCC OF S MCC OF Z

0.956 0.049 -0.16 -0.025
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Figure 7: Domain Adaptation with different number of
batches

4.6. Ablation studies
In this experiment, we examine the individual contribution
of the components of GCRL. First, we remove the cou-
pling layers from the priors and replace them with learnable
parameters. Second, we reconstruct past trajectories and
predict future trajectories using only samples from q(z|x).
Third, we use only the samples of q(s|x). We train the mod-
els on the synthetic dataset with {0.1, 0.3, 0.5} shifts and
test it on the domain with 0.6 shift.

Table 4: The effect of different components on performance.

MODELS ADE FDE

VANILA GCRL 0.0871 0.1047
NO COUPLING LAYERS 0.0772 0.0916
Z ONLY 0.1054 0.1347
S ONLY 0.2188 0.2418

As shown in Table 4, the model with only Z performs on
par with the default model, however, the performance de-
teriorates when using only S. It can be concluded that Z
is invariant across domains as expected, however, it lacks
information, which leads to worse ADE. The model with-
out coupling layers performs better than the default model
for synthetic dataset, which indicates that fewer parameters
would suffice for certain environments.

4.7. Discussion

Intuitively, fine-tuning a GMM is asking whether we can
use a combination of learned representations in the test
domain, or whether we need a new kind of representation
(cluster). Therefore, instead of fine-tuning all parameters of
p(s) we can fine-tune the weights of the GMM only in cases
such as OOD-Inter. According to Figure 6, the performance
of GCRL degrades for samples with MSD ≥ 0.5 and

performs worse than baseline for MSD ≥ 0.7 . The reason
is we have trained the model on samples with MSD =
{0.1, 0.3, 0.5}, hence, the intrapolated samples i.e., samples
with MSD ≤ 0.5, have similar variant representations
S. In other words, the trained model works well for the
interpolated samples, but for the extrapolated samples, the
GMM prior fails to generalize and domain adaptation is
required when transferring to a new domain.

In addition to the results presented in the paper, we con-
ducted extensive ablation experiments including fine-tuning
only the GMM weights and not fine-tuning other compo-
nents of p(s) which resulted in 34.1% improvement whereas
the reported result in the paper is 34.3%. Consequently, we
found the best performance was achieved when we fine-
tuned all p(s), q(s|x), p(x|s, z), and p(y|x, s, z).

As for the identifiabiltity of Z, we applied extensive regular-
izations including contrastive modeling and constraints on
the components of GMM, however, in our experiments we
did not observe any improvement from these methods.

As a proof of concept we carried out experiments of our
approach using two datasets, real and synthetic. The ETH-
UCY dataset is the only dataset used by the baseline model
(Huang et al., 2019). Since our contribution is focused on
robustness and domain adaptation, we wanted to show that
by utilizing a motion forecasting model that can better cap-
ture interactions between agents in complex datasets, GCRL
could achieve the same robustness and efficiency in trans-
fer learning. We also believe that given the right baseline
model, our method can perform well in out-of-distribution
prediction in other applications but, this is yet to be eval-
uated. GCRL requires a model with EID architecture and
constraints on the decoder of the model to ensure identi-
fiability of S which are some parts of its limitations. Our
results suggest that considering a temporal graph instead of
a summary graph and capturing human-human and human-
space interactions can be a promising future work of GCRL.

5. Conclusions
We propose a method that leverages causality to learn mean-
ingful features that can increase the robustness and trans-
ferability of deep learning models. In presence of spurious
correlation, we demonstrated the robustness of our method
while other human trajectory prediction models performed
poorly compared to our method. Furthermore, our aug-
mented causal model was able to enhance the transferability
in a zero-shot and low-shot settings. It can be concluded
from our results that incorporating causality in deep learning
is a promising research direction towards robustness and
explainability of deep learning models.
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A. Methodology details
Lower bound on the log likelihood of past trajectories The objective function in GCRL is given in Equation 3. Since
the future trajectories are unknown at test time, the approximate posterior q(s, z, e|x, y) is intractable. Therefore, we rewrite
the Equation 3 such that the approximate posterior is conditioned on only x:

max
p,q

Ep∗(x,y)

[
Eq(s,z,e|x,y)

[
log

p(x, y, s, z, e)

q(s, z, e|x, y)

]]
=

max
p,q

Ep∗(x,y)

[
Eq(s,z,e|x,y)

[
log

p(x, y, s, z, e)q(y|x)
q(s, z, e, y|x)

]]
=

max
p,q

Ep∗(x,y)

[∫ [
log

p(x, y, s, z, e)q(y|x)
q(s, z, e, y|x)

]
q(s, z, e|x, y)dsdzde

]
=

max
p,q

Ep∗(x,y)

[∫ [
log

p(x, y, s, z, e)

q(s, z, e, y|x)

]
q(s, z, e|x, y)dsdzde+

∫
[log q(y|x)] q(s, z, e|x, y)dsdzde

]
=

max
p,q

Ep∗(x,y)

[∫ [
log

p(x, y, s, z, e)

q(s, z, e, y|x)

]
q(s, z, e|x, y)dsdzde+ log q(y|x)

]
=

max
p,q

Ep∗(x,y)

[∫ [
log

p(x, y, s, z, e)

q(s, z, e, y|x)

]
q(s, z, e, y|x)

q(y|x)
dsdzde+ log q(y|x)

]
=

max
p,q

Ep∗(x,y)

[∫ [
1

q(y|x)
log

p(x, y, s, z, e)

q(s, z, e, y|x)

]
q(s, z, e, y|x)dsdzde+ log q(y|x)

]
=

max
p,q

∫ [
1

q(y|x)
log

p(x, y, s, z, e)

q(s, z, e, y|x)

]
p∗(x, y)q(s, z, e, y|x)dsdzdedxdy +

∫
[log q(y|x)] p∗(x, y)dxdy =

max
p,q

∫ [
1

q(y|x)
log

p(x, y, s, z, e)

q(s, z, e, y|x)

]
p∗(y|x)p∗(x)q(s, z, e, y|x)dsdzdedxdy +

∫
[log q(y|x)] p∗(y|x)p∗(x)dxdy =

max
p,q

∫ [
p∗(y|x)
q(y|x)

log
p(x, y, s, z, e)

q(s, z, e, y|x)

]
q(s, z, e, y|x)p∗(x)dsdzdedxdy +

∫
[log q(y|x)] p∗(y|x)p∗(x)dxdy =

max
p,q

∫
Eq(s,z,e,y|x)

[
p∗(y|x)
q(y|x)

log
p(x, y, s, z, e)

q(s, z, e, y|x)

]
p∗(x)dx+

∫
Ep∗(y|x) [log q(y|x)] p∗(x)dx =

max
p,q

Ep∗(x)Ep∗(y|x)[log q(y|x)] + Ep∗(x)[Eq(s,z,e,y|x)[
p∗(y|x)
q(y|x)

log
p(x, y, s, z, e)

q(s, z, y, e|x)
]]

(10)

which gives us the Equation 4. According to Equation 13, q(y|x) will be derived towards p∗(y|x) as desired and the
objective function will become:
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max
p,q

Ep∗(x)[Eq(s,z,e,y|x)[
p∗(y|x)
p∗(y|x)

log
p(x, y, s, z, e)

q(s, z, y, e|x)
]] =

max
p,q

Ep∗(x)[Eq(s,z,e,y|x)[log
p(x, y, s, z, e)

q(s, z, y, e|x)
]] =

max
p,q

Ep∗(x)[

∫
[log

p(x, y, s, z, e)

q(s, z, y, e|x)
]q(s, z, e, y|x)dsdzdedy] =

max
p,q

Ep∗(x)[

∫
[log

p(y|s, z, x)p(x|s, z)p(z)p(s|e)p(e)
q(y|s, z, x)q(z|x)q(s|x)q(e|x)

]q(y|s, z, x)q(z|x)q(s|x)q(e|x)dsdzdedy] =

max
p,q

Ep∗(x)[

∫
[log

p(x|s, z)p(z)p(s|e)p(e)
q(z|x)q(s|x)q(e|x)

]p(y|s, z, x)q(z|x)q(s|x)q(e|x)dsdzdedy] =

max
p,q

Ep∗(x)[

∫
[log

p(x|s, z)p(z)p(s|e)p(e)
q(z|x)q(s|x)q(e|x)

]q(z|x)q(s|x)q(e|x)dsdzde] =

max
p,q

Ep∗(x)[

∫
[log

p(x|s, z)p(z)p(s)p(e|s)
q(z|x)q(s|x)q(e|x)

]q(z|x)q(s|x)q(e|x)dsdzde] =

max
p,q

Ep∗(x)[Eq(s,z|x)[log p(x|s, z)] + Eq(z|x)[log
p(z)

q(z|x)
] + Eq(s|x)[log

p(s)

q(s|x)
] + Eq(e|x)[log

p(e|s)
q(e|x)

]] ≤

max
p,q

Ep∗(x)[Eq(s,z|x)[log p(x|s, z)]] ≤

max
p,q

Ep∗(x)[logEq(s,z|x)[p(x|s, z)]] = Ep∗(x)[log p(x)]

(11)

which is evidently the lower bound of log p(x). KL denotes the KL-divergence. Since the natural logarithm is
a concave function, the second inequality follows from Jensen’s inequality. The third equality in Equation 11 fol-
lows from the Causal Markov condition that q(s, z, e, y|x) = q(y|x, s, z)q(z|x)q(s|x, e)q(e|x) and p(x, s, z, y, e) =
p(y|x, s, z)p(x|s, z)p(s|e)p(z)p(e). Furthermore, we are using mean-field variational inference in which latent variables
are assumed to be independent i.e., q(s|e, x) = q(s|x). The last equality holds because eventually q(s|x) = p(s) and
q(z|x) = p(z).

GCRL objective function According to Equation 11, eventually, q(e|x) will be derived towards p(e|s). Therefore, it is
sensible to assume that q(e|x) = p(e|s). This is useful because it helps us to obtain a GMM prior and avoid modelling of
the approximate posterior of E. This can be shown via Bayes rule and replacing :

q(e|x) = p(e|s) = p(s|e)p(e)
p(s)

=
p(s|e)p(e)∑
e p(s|e)p(e)

(12)

Since we assume p(e) and p(s|e) are known, we can avoid modelling q(e|x). By replacing q(e|x) in Equation 4 and using
the Causal Markov condition, we can obtain a GMM prior for S:

max
p,q

Ep∗(x)Ep∗(y|x)[log q(y|x)] + Ep∗(x)[Eq(s,z,e,y|x)[
p∗(y|x)
q(y|x)

log
p(x, y, s, z, e)

q(s, z, y, e|x)
]] =

max
p,q

Ep∗(x,y)[log q(y|x) + Eq(s,z,e|x)[
p(y|s, z, x)
q(y|x)

log
p(y|s, z, x)p(x|s, z)p(z)p(s|e)p(e)
q(y|s, z, x)q(z|x)q(s|x)q(e|x)

]] =

max
p,q

Ep∗(x,y)[log q(y|x) +
1

q(y|x)
Eq(s,z,e|x)[p(y|s, z, x) log

p(x|s, z)p(z)p(s|e)p(e)
q(z|x)q(s|x)q(e|x)

]] =

max
p,q

Ep∗(x,y)[log q(y|x) +
1

q(y|x)
Eq(s,z,e|x)[p(y|s, z, x) log

p(x|s, z)p(z)p(s|e)p(e)p(s)
q(z|x)q(s|x)p(s|e)p(e)

]] =

max
p,q

Ep∗(x,y)[log q(y|x) +
1

q(y|x)
Eq(s,z,e|x)[p(y|s, z, x) log

p(x|s, z)p(z)p(s)
q(z|x)q(s|x)

]]

(13)
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where p(s) =
∑

e p(s|e)p(e) that is a GMM prior for S. q(y|x) can be written as:

q(y|x) =
∫

q(y|x, s, z)q(s, z|x)dsdz =

∫
p(y|x, s, z)q(s|x)q(z|x)dsdz = p(y|do(x)) = Eq(s|x),q(z|x)[p(y|x, s, z)]

(14)

where p(y|do(x)) is the causal effect of X on Y and can be calculated by ancestral sampling. We have obtained Equation 6
which is the objective function of GCRL.

B. Experiment
In this section, we present the experimental details and more experimental results achieved when evaluating our framework.
Following our proposed method in Section 3 of the paper, our final loss function is formulated by Equation 6.

B.1. Experiment details

The list of all hyperparameters used by our model and their corresponding settings applied when conducting our experiments
are represented in Tables 5 and 6.

Following Tables 5 and 6 and Equation 6, SDim and ZDim show the dimensions of the latent representation space for
S and Z variables, respectively. Ns

q(y|x) and Ns
Eq(s|x),q(z|x)

show the number of sampling from S and Z distributions for
calculating the expectations of q(y|x) and Eq(s|x),q(z|x), respectively.

RInput shows the reconstructed input that is the relative distance of the pedestrians from their starting locations, drel, which
are used in our experiments conducted by the ETH-UCY dataset for a fair comparison with the state-of-the-art methods.
Our hyperparameter settings ruuning experiment with ETH-UCY dataset are represented in Table 5. Our model is trained
for 300 epochs in experiments conducted with the ETH-UCY dataset.

Table 5: Detailed hyperparameter settings of the experiments with ETH-UCY dataset.

Parameter Setting Parameter Setting

SDim 8 Learning Rate Scheduler (one-cycle)
ZDim 8 Optimizer Adam
Ns

Eq(y|x)
10 ncluster (GMM) 5

Ns
Eq(s|x),q(z|x)

10 RInput drel

Note if Ns
q(y|x) = 1, then in the second term of the loss function p(y|x, s, z) cancels out q(y|x), therefore, all components of

the second term of the loss function will not include the predicted future trajectories y. Considering this, for the experiments
where Ns

q(y|x) = 1, we use a hyperparameter N , which is defined as the number of generated trajectories per sample, to
improve the performance. In this case, the term log q(y|x) in Equation 6 becomes the variety loss (Gupta et al., 2018).
We do this because our approach to causal representation learning is generative, and therefore, we can benefit from its
generative aspect to improve the performance of our model. N is set to 20 during training and 100 during evaluation in
experiments with synthetic dataset. Hyperparameter settings for experiments with synthetic dataset are represented in Table
6. The absolute locations of the pedestrians labs are used in our experiments with the synthetic dataset for a fair comparison
with IM.

We trained our method GCRL in the experiments with synthetic dataset for 250 epochs. We fine-tuned the trained models
for the domain adaptation task for 100 epochs. IM has a training paradigm conducted in 4 phases with the total number of
470 epochs followed by 300 epochs for finetuning. On the other hand, our proposed method offers an end-to-end learning
process which converges with much less number of epochs both for training and fine-tuning tasks.
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Table 6: Detailed hyperparameter settings of the experiments with Synthetic dataset.

Parameter Setting Parameter Setting

SDim 2 Learning Rate 5× 10−3

ZDim 2 Optimizer Adam
Ns

Eq(y|x)
1 ncluster

(GMM)
5

Ns
Eq(s|x),q(z|x)

10 RInput labs

B.2. Additional Experiments

Motion forecasting with ETH-UCY We present motion forecasting results of all environments of the ETH-UCY dataset;
’ETH’, ’HOTEL’, ’UNIV’, ’ZARA1’ and ’ZARA2’. These experiments are conducted without the controlled spurious
correlations. Table 7 presents a comparison between performances of GCRL and the base model STGAT (Huang et al.,
2019) with similar settings.

Table 7: Motion forecasting results on different domains of ETH-UCY.

Model ADE/FDE
ETH HOTEL UNIV ZARA1 ZARA2 AVG

STGAT 0.8/1.53 0.52/1.08 0.51/1.12 0.39/0.87 0.3/0.64 0.5/1.05
GCRL 0.97/1.9 0.55/1.14 0.51/1.13 0.38/0.84 0.3/0.67 0.54/1.1

Figures 8a and 8b show the ADE while training and validating our model on the ’hotel’, ’univ’, ’zara1’, and ’zara2’
environments of the ETH-UCY dataset for 300 epochs, respectively. The trained model is tested on the ’eth’ environment at
inference. Figures 9a and 9b, on the other hand, show the FDE for training and validation, respectively. The convergence
of prediction and reconstruction losses during training are shown in Figures 10a and 10b, respectively. Large values of
reconstruction and prediction losses are due to the constant terms added to p(x|, s, z) and p(y|x, s, z) such as the log of
determinant of covariance matrices. The regularization loss of S and Z distributions are also represented by Figures 11a and
11b, respectively. As shown in the Figures, the regularization losses converge to zero showing that the model drives the
posterior distributions of S and Z towards their priors.

Ablation study on ETH-UCY In Table 8, the results for Ablation studies are presented. We used different settings to
evaluate our method in these experiments including: removing coupling layers, changing the dimensions of S and Z latent
representations, and applying different number of clusters for GMM used to model prior of S.

Table 8: The effect of different components on performance when experimenting with the ETH-UCY dataset.

MODELS ADE FDE

VANILA GCRL 0.9728 1.8696
NO COUPLING LAYERS 0.9881 1.8869
LATENT DIMENSION:2 0.9736 1.8459
NUMBER OF GMM CLUSTERS:2 0.9732 1.9534
NUMBER OF GMM CLUSTERS:7 0.9775 1.9169
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Figure 8: ADE
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Figure 9: FDE
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Figure 10: Predictions
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Figure 11: Regularizations
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