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Abstract

Reinforcement learning (RL) has been shown to learn sophisticated control policies1

for complex tasks including games, robotics, heating and cooling systems and2

text generation. The action-perception cycle in RL, however, generally assumes3

that a measurement of the state of the environment is available at each time step4

without a cost. In applications such as materials design, deep-sea and planetary5

robot exploration and medicine, however, there can be a high cost associated with6

measuring, or even approximating, the state of the environment. In this paper, we7

survey the recently growing literature that adopts the perspective that an RL agent8

might not need, or even want, a costly measurement at each time step. Within9

this context, we propose the Deep Dynamic Multi-Step Observationless Agent10

(DMSOA), contrast it with the literature and empirically evaluate it on OpenAI11

gym and Atari Pong environments. Our results, show that DMSOA learns a better12

policy with fewer decision steps and measurements than the considered alternative13

from the literature.14

1 Introduction15

In many applications of reinforcement learning (RL), such as materials design, computational16

chemistry, deep-sea and planetary robot exploration and medicine (13; 15; 2), there is a high cost17

associated with measuring, or even approximating, the state of the environment. Thus, the RL system18

as a whole faces observation costs in the environment, along with processing and decision making19

costs in the agent. On both sides, the costs result from a cacophony of factors including the use20

of energy, systems and human resources. In this work, we propose the Deep Dynamic Multi-Step21

Observationless Agent (DMSOA), the first RL agent in its class to reduce both measurement and22

decision making costs.23

Since standard RL agents require a large number of state-action-reward-next state interactions with24

the environment during policy learning and application, the measurement and decision making costs25

can be very high. Traditionally, these underlying costs are hidden from the agent. Indeed, little26

consideration has been given to the idea that the agent might not need, or even want, a potentially27

costly observation at each time step. In the real-world, however, agents (animal or artificial) are28

limited by their resources. To save time and energy, decision making associated with common or29

predictable tasks is believed to be conducted re-actively or based on fast, low-resource systems.30

Only with deliberate cognitive intervention are the slower, resource-intensive planning systems used31

(22; 8).32

Recently, there have been a number of interesting conference papers, workshop discussions and33

theses discussing how to address this problem in RL (4; 15; 5; 11; 6; 9; 20). The general approach is34

to augment RL by a) assign an intrinsic cost to measure the state of the environment, and b) provide35
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Figure 1: Illustration of the DMSOA Framework.

the agent with the flexibility to decide if the next state should be measured. Together, these provide a36

mechanism and a learning signal to encourage the agent to reduce its intrinsic measurement costs37

relative the to the explicit control rewards it receives.38

When the agent opts not to measure the state of the environment, it must make its next control39

decision based on stale information or an estimate. Thus, at the highest level, this constitutes a40

partially observable Markov decision process (POMDP). Learning a POMDP, however, is much more41

difficult than learning a Markov decision process (MDP) with RL (17). When designed as shown in42

Fig. 1, the agent’s experience is composed of fully observable measurements and partially observable43

estimates of the state of the environment. Thus, the problem is related to mixed observable Markov44

decision processes (MOMDPs), which are an easier sub-class of POMDPs (16). The authors in45

(15) denoted this class of RL problem as action-contingent, noiselessly observable Markov decision46

processes (AC-NOMDPs). Distinct from an MOMDP, action-contingent in AC-NOMDP relates47

the fact that the agent explicitly chooses between measuring and not measuring the environment.48

“Noiselessly observable” relates to the fact that when the agent decides to measure at a cost, the49

state is fully observable. Although previous works have used different terms to refer to this class of50

problem, we believe that AC-NOMDP is the most descriptive of the underlying dynamics and use it51

throughout this paper.52

Recently, (15) provided a theoretical analysis of the advantages of AC-NOMDP of over a general53

POMDP formulation and found a significant improvement in efficiency for RL with explicit obser-54

vation costs and actions. All other previous works have carried out limited empirical evaluations in55

which the proposed algorithm is compared to a baseline MDP (11; 5; 9; 20). Moreover, the previous56

analyses primarily relied on just a few, or even single, experiments on OpenAI gym classic control57

environments and grid-worlds (11; 5; 20).58

In this work, we compare DMSOA to the one-step memory-based observationless agent (OSMBOA)59

recently proposed in (5). Our contribution serves to expand the state-of-the-art in AC-NOMDP60

algorithms and the understanding of how different classes of algorithms impact the observation61

behaviour. OSMBOA was selected for its demonstrated effectiveness and easy of use. At each time62

step, OSMBOA selects a control action and makes a decision about measuring the next state of the63

environment. If no measurement is made, the agent’s next control action is selected based on its64

fixed-size internal memory of the last measured state(s). In contrast, DMSOA selects a control action65

and the number of times to apply the action before measuring the next state. Therefore, DMSOA66

learns to reduce both observation costs and decision making costs by dynamically applying its control67

action multiple times.68

To facilitate fair comparison, we implement both agents as double DQN (25) with prioritized69

experience replay (19). We evaluate the agents in terms of the accumulated extrinsic control reward70

and by the reduction in the number of observations and decision steps made on Atari Pong and71
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OpenAI gym (7). The results show that the proposed method learns a better control policy, requires72

fewer measurements of the environment and decision steps. Moreover, DMSOA has less variance73

across independent training runs.74

The remainder of the paper is organized as follows. In the next section, Section 2, we outline the75

related work. Section 3 formalizes the AC-NOMDP problem and Section 4 presents the proposed76

algorithms. Section 5 provides the experimental setup. The results are shown in Section 6 and77

discussed in Section 7. Our concluding remarks are in Section 8.78

2 Related Work79

This work fits into a small but growing sub-area of RL in which observations are optional at each time80

step and have an explicit cost to the agent when they are made. In the subsection immediately below,81

we provide an overview of methods recently applied to AC-NOMDP. Following that, we discuss the82

literature directly related to the proposed DMSOA algorithm.83

2.1 AC-NOMDP Methods84

In the existing work, the authors in (4; 15; 20) proposed tabular Q-learning-based algorithms for85

AC-NOMDPs and (11; 15; 5; 9) proposed deep RL based methods. In (11), the authors modify TRPO,86

and in (15; 9), actor-critic frameworks with a recurrent neural networks are used. In (5), the authors87

provide a wrapper class that modifies the underlying environment by expanding the observation and88

action spaces to facilitate any off-the-shelf deep RL algorithm to work in the AC-NOMDP setting.89

Through our analysis of the literature, we have identified 4 key questions addressed when developing90

for AC-NOMDPs. These are: 1) the mechanism by which the agent expresses its desire not to91

measure, 2) how the observation is supplemented when no measurement is made, 3) how the agent is92

encouraged to reduce its reliance of costly measurements, and 4) how the agent is constructed.93

The most common way to handle question 1) is by expanding the action space. In the case of94

discrete actions, (4; 15; 5; 9; 20) expanded the action space to action tuples: ⟨control actions⟩ ×95

⟨measure, don’t measure⟩. Alternatively, in (11), the agent specifies the control action plus a sample96

purity value q ∈ R1, where a larger q triggers a less accurate measurement with lower associated97

costs.98

With respect to question 2), when the agent does not request a fresh measurement in (11; 4; 15; 9),99

the environment sends a Null state observation or an observation composed of zeros. In (4), the100

agent uses an internal statistical model to estimate the next state and in (15; 9) the agents utilize101

a deep recurrent networks for estimating belief states and encoded states, respectively. In (5), the102

agent utilizes a fixed-size memory of recent measurements when no measurement is made. To reduce103

partial observability, each observation is augmented with a flag indicating whether or not it is the104

result of a fresh measurement of the environment. Since the agent in (11) adjusts the noise level105

rather than turning on and off measurements, it makes its next action selection purely based on the106

noisy measurement returned.107

Question 3) relates to the rewards structure. This is generally divided into intrinsic rewards (or costs),108

which are used to encourage the agent to reduce its reliance on costly measurements and extrinsic109

rewards that push the agent to achieve the control objective. At each time step in (11; 4; 15; 9), an110

intrinsic cost is subtracted from the extrinsic reward if the agent measures the state. Alternatively, in111

(21) a positive intrinsic reward is added when the agent foregoes a measurement. A critical point that112

remains unclear in the literature is how to acquire the extrinsic reward when no measurement is made.113

In most cases, this is simply assumed to be available. We argue that if no measurement is made, the114

extrinsic reward cannot be known. As a result, in this work only the intrinsic portion of the reward is115

provided when no measurement is made.116

The final question relates to the architecture of the agent. In (4; 15; 5), a single agent policy select117

both the control action and the measurement behaviour. Alternatively, in (11; 9; 20), separate policies118

are learned to determine the control actions and measurement actions. In addition, (4; 15; 9) learn119

models for estimating the next state.120
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2.2 Works Related to DMSOA121

The proposal of (20) is most algorithmically related to the DMSOA. In it, the author demonstrated122

the potential of dynamic action repetition for RL with observation costs using tabular q-learning. The123

agent learns to forego a sequence of one or more measurements in predictable regions of the state124

space by repeatedly applying the same action. Their proposed method is found to requires fewer125

measurement step to reach the goal than the MDP baseline. However, it is only suitable for discrete126

state and actions spaces, and was only evaluated on grid-world problems. In this work, we show127

how action repetition and measurement skipping can be implemented in deep RL for continuous and128

image-based observation spaces.129

DMSOA is a method that aims to improve the efficiency of RL. To this end, it is weakly related to130

other techniques to improve the sampling efficiency (19; 10; 18). The classic sample efficiency work,131

however, aims to reduce the overall number of training steps needed to learn a suitable policy, rather132

than reducing the measurement or decision steps made by the agent.133

DMSOA utilizes concepts from the RL literature on dynamic frame skipping to repeatedly apply134

the selected control action (12). In DMSOA, however, the agent’s measurement skipping policy is135

shaped by the intrinsic reward. Moreover, unlike frame skipping applications, which are concerned136

with processing speed not measurement costs, DMSOA does not have access to privileged extrinsic137

control rewards from intermediate steps. This making the problem more challenging.138

In addition, DMSOA has a connection to the options framework (24), and particularly dynamic139

options (1). Similar to the options framework, at each decision point the DMSOA agent chooses to140

apply a sequence of actions that will transition the agent through multiple states. In DMSOA, the141

agent’s policy selects a single control action and the number of times to apply the action in order to142

reduce its measurement costs while still achieving the control objective. Through the incorporation of143

measurement costs, the agent is able to learn how many times the action should be applied in order to144

arrive at the next meaningful state. For DMSOA, a meaningful state is one for which the information145

provided by it is greater than the cost to measure it.146

3 Problem Setup147

An AC-NOMDP is defined by ⟨S,A,O,P,Rext,Rint,Ps0 , γ⟩ where S is the state space, A =148

⟨Ac ×Am⟩ is the set of action tuples composed of control actions ac and binary measurement actions149

am ∈ {0, 1} that specify if an observation of the next state is requested. The observation space O is150

related to S by the observation emission function p(o|s′, a) (more on this below). P : S×A×S → R151

denotes the transition probabilities, Rext : S × Ac → R denotes the extrinsic reward function,152

Rint : S ×Am → R denotes the intrinsic reward function that encourages the agent to reduce the153

number of measurements it makes. The rint value is typically set to slightly outweigh the rext value154

to achieve the balance between the need for information to solve to control problem and the cost of155

information. If rint is very large or very small relative to rext, the agent may never measure at the156

cost of solving the control objective or always measure and fail to reduce the observation costs.157

The function Ps0 : S → R denotes the probability distribution over the initial state and γ ∈ (0, 1]158

is the discount factor. The observation emission function p(o|s′, a) specifies the probability of159

observing o ∈ O given the action a in state s. Unlike the more general POMDP, the observation160

space in a AC-NOMDP is limited to O = S ∪ {empty}, where empty is the missing measurement161

of the environment. In this setup, the potential probabilities of p(o|s′, am = 1) ∈ {0, 1}, with162

p(o|s′, am = 1) = 1 if and only if o = s′ and p(o|s′, am = 1) = 0 for all o ̸= s′. In contrast,163

p(o|s′, am = 0) = 1 if and only if o = stale.164

The agent learns a policy π(o) : O → A that maps observations to action tuples. The initial165

observation o0 = s0 contains a fresh measurement of the environment. The control action selected166

by the agent is applied in the environment and the underlying state transitions according to P . At167

each time step, the reward, rt is the intrinsic reward, rt = r(int,t), if am = 0, otherwise the extrinsic168

reward, rt = r(ext,t), is given in response to the state st and control action ac selected by the agent.169

When the measurement action, am = 1, is selected, the agent receives a fresh measurement of the170

underlying state ot+1 = st+1 of the environment. Alternatively, when am = 0, the agent does not171

obtain a fresh measurement and the next action must be selected based the agent’s internal mechanism,172

such as an internal memory or model.173
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The OSMBOA agent selects one control and one measurement action, ⟨ac,t, am,t⟩ per time step,174

whereas the DMSOA agent moves from decision point to decision point with a frequency less than175

or equal to the environment’s clock. At each decision point, the DMSOA agent selects a control176

action and the number of times to apply it, k. The state is only measured on the kth application (e.g.177

⟨ac, am = 0⟩t, ..., ⟨ac, am = 0⟩t+(k−1), ⟨ac, am = 1⟩t+k).178

The agent’s objective is to learn a policy π that maximizes the discounted expected costed return179

which incorporates both the intrinsic and extrinsic rewards:180

J(π) = E
at∼π,st∼P

[∑
t

γtr(st, at)

]
, (1)

where γ < 1 is the discount factor. In this work, we focus on deep Q-learning based solutions (14)181

combined with standard improvements for better convergence and stability (23; 25; 19). Although182

this work examines problems with discrete action spaces, the proposed algorithms can be modified183

for continuous action spaces.184

4 Deep Dynamic Multi-Step Observationless Agent185

The Deep Dynamic Multi-Step Observationless Q-learning Agent (DMSOA) for noiselessly observ-186

able RL environments with explicit observation costs is presented in Figure 1. The framework has187

three key components: the control policy πc : o → aa that maps the observation to a control action,188

the measurement skipping policy πm : o, ac → k that maps the observation and selected control ac-189

tion to k ∈ {1, ...,K} the number of steps to apply ac to the environment, and the action-observation190

scheduler. The action-observation scheduler applies the action pair (ac, 0) k − 1 times and collects191

the intrinsic rewards rint from the environment. On the kth iteration, it applies the action pair (ac, 1),192

records the extrinsic reward rext, and passes the new observation to πc and πm. The extrinsic reward193

is equal to the control policy reward for applying ac and arriving in the measured state after step i = k.194

The intrinsic reward is rint ∈ {0, c}, where c is a bonus (ie. “cost saving”) given to the agent when it195

chooses not to measure. To ensure the agent is motivated to omit measurements whenever possible,196

we set c ≥ rmax
ext . The optimal setting of c will depend on the application and the requirements of the197

domain.198

In this work, the policies are implemented as deep Q networks (DQN), however, other forms of policy199

learning could be utilized. The agent’s objective is to maximize the costed rewards
∑∞

t=0 γ
trt. To200

achieve this we learn parameterized value functions Qc(o; θ) and Qm(o, a; ζ) as feed-forward deep201

neural networks. As described above, for an m-dimensional observation space and an n-dimensional202

action space, Qc is a mapping from an m-dimensional observation to an n-dimensional vector of203

action values. The function Qm is a mapping from an m+ 1-dimensional observation-action to a204

K-dimensional vector of measurement values. In the case of image data, each channel is augmented205

with the action details. The argmax of each output indicates the action to apply and the number of206

times to apply it.207

During training, the experience tuples (ot, a(c,t), a(m,t), rt, ot+1) are stored in a prioritized experience208

replay buffer. To improve stability, target networks θ− and ζ− for Qc and Qm are copied from θ and209

ζ every τ steps. The target for the control network is:210

Y Qc

i ≡ rt + γ Qc

(
ot+1, argmaxaQc(ot+1, a; θt); θ

−
t

)
. (2)

For the same update step, the target for the measurement network is:211

Y Qm

i ≡ rt + γ Qm

(
(ot+1, a(c,t+1)), argmaxaQm((ot+1, a(c,t+1)), a; ζt); ζ

−
t

)
. (3)

The corresponding losses are:212

LQc

i (θi) = E(ot,a(c,t))∼D
[
(Y Qc

i −Qc(ot, a(c,t); θi)
2
]
, (4)

and213

LQm

i (ζi) = E(ot,a(c,t),a(m,t))∼D
[
(Y Qm

i −Qm((ot, a(c,t)), a(m,t); ζi)
2
]

(5)
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Figure 2: Mean and standard deviation of performance on Cartpole (upper) and Acrobot (lower). Left:
costed reward and right: episode length. In both cases, DMSOA has a higher mean costed reward,
and is superior in terms of the control objective (longer episodes on Cartpole and shorter episodes on
Acrobot.)

5 Experimental Setup214

In this section, we compare the performance of DMSOA to OSMBOA. In order to highlight the215

differences in the measurement behaviour of each method, we implement both with double DQN216

and a prioritized replay buffer. The hyper-parameters were selected via grid search with 3 random217

trials. For the evaluation, we report the mean and standard deviation of the reward during training218

and the observation behaviour of the best policy. Each agent is reinitialized with 20 difference seeds219

and trained on the OpenAI gym environments Cartpole, Acrobot, Lunar Lander and Atari Pong. The220

experiments were run on CentOS with Intel Xeon Gold 6130 CPU and 192 GB memory. In addition,221

a NVIDIA V100 GPU was used in the training of the Atari agent.222

6 Results223

Figure 2 shows the mean and standard deviation for each agent on the Cartpole and Acrobot environ-224

ments. The aim in the Cartpole environment is for the agent to operate a cart such that a vertical pole225

remains balanced for as long as possible. The extrinsic reward is set to 1 and the intrinsic reward is226

set to 1.1. We truncate each episode at a maximum of 200 time steps. In the Acrobot environment,227

the objective is to apply torque to flip an arm consisting of two actuated links connected linearly228

above a target height in as few steps as possible. The agent receives an extrinsic reward of -1 or an229

intrinsic reward of -0.85 at each time step. Each episode ends after 200 steps or when the arm is230

successfully flipped over the line.231

Table 1: Ratio of steps with measure-
ments to steps without measurements of
the converged policy during training.

Env. DMSOA OSMBOA
Cartpole 1:1.27 1:0.37
Acrobot 1:0.45 1:1.03
Lunar Lander 1:1.56 1:0.33

DMSOA learns a policy for both environments that pro-232

duces a higher costed reward than OSMBOA. This indi-233

cates that DMSOA requires fewer measurements whilst234

carrying out the control policy. In addition, the standard235

deviation is lower indicating more stability across indepen-236

dent training runs. The episode length plots on the right237

show that DMSOA learned policies to keep the Cartpole238

upright longer and flip the Acrobot over the goal faster.239

Thus, DMSOA outperforms OSMBOA on all accounts.240

The objective of the Lunar Lander environment is to fire241

the lander’s rockets such that it lands squarely in the target area. In general, the results show shows242
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that DMSOA has significantly more successful landings than OSMBOA. Similarly to Cartpole243

and Acrobot, our analysis finds that DMSOA is more efficient in the number of decision steps244

and observations. More details on the environment along with performance plots are available in245

Appendix A Figure 5246

Table 1 shows the ratio of the number of steps made without measuring for each measurement made.247

On Cartpole and Lunar Lander, DMSOA makes more than one step without measuring for each248

measurement step, whereas on Acrobot it makes an average of 0.5 non-measuring steps for each249

measuring step. This suggests that the dynamics of Acrobot are less predictable, causing DMSOA to250

measure more frequently on Acrobot. Interestingly, Acrobot is the only environment where OSMBOA251

does better than a 1:1 ratio.252

6.1 Examination of Measurement Policies253

Figure 3 shows the measurement behaviour of the best OSMBOA (left) and DMSOA (right) policies254

for Cartpole (top), Acrobot (middle) and Lunar Lander (lower) environments. Each row specifies a255

1-episode roll-out of the best policy. Each column in the OSMBOA plots is the environment time256

step during the episode. For OSMBOA, the number of decision steps is equivalent to the number of257

steps in the environment. In contrast, each column in the DMSOA plots corresponds to a decision by258

the agent, with one or more environment time steps associated with it. In addition to highlighting259

the measurement efficiency, this also shows the decision efficiency. On Cartpole, DMSOA makes260

approximately 70 action selections (decisions) per episode of 200 environment steps (the mean steps261

per episode are shown in Figure 2.262

For OSMBOA, an orange cell indicates that a fresh measurement of the environment and blue263

specifies that no measurement was requested at corresponding time step. In the case of DMSOA, the264

colour indicates the number of consecutive steps that were taken without a fresh measurement. Blue265

indicates that a measurement is made after the control action is applied once, yellow indicates that a266

measurement is made after the control action is applied twice and red indicates that a measurement is267

made after the control action is applied three times.268

The distinct pattern in each plot suggests the different capabilities of each class of AC-NOMDP269

agent, along with the fact that each environment is unique in terms of its dynamics and complexity.270

The consistent measurement patterns for OSMBOA and DMSOA on Cartpole suggest that the271

environment has very regular dynamics. OSMBOA switches between selecting the next action from a272

freshly measured observation and selecting it from a stale observation. Alternatively, DMSOA learns273

to apply an action 3 times before measuring. This clearly demonstrates the potential of DMSOA to274

take more environment steps without measuring than OSMBOA.275

Acrobot and Lunar Lander show much more complex measurement behaviour. For both OSMBOA276

and DMSOA on Acrobot during approximately the first 3/4s of the each episode they display a pattern277

of frequently measuring followed by briefly not measuring. Our analysis finds that both OSMBOA278

and DMSOA skip measurements while the arcobot is in the lower left region of the observation space.279

This is roughly where the momentum of the Acrobot shifts from heading way from the goal, back280

towards to the goal. In this area, it is deemed safe to apply torque back towards the goal without281

observing. In the last quarter of each episode, both agents take more steps without measuring. It282

is noteworthy that in most episodes OSMBOA takes significantly more steps without observing283

than DMSOA. However, this has a negative impact on the total number of action decisions made by284

OSMBOA on route to achieving to goal. This particularly visible in episodes 1 and 4. DMSOA does285

not to suffer from similar behaviour.286

On the Lunar Lander environment both methods take few or no measurements near the end of the287

episode when the agent is close to landing. In addition, DMSOA repeatedly takes 2-3 steps before288

measuring at the beginning of each episode, whereas OSMBOA repeatedly measures early in each289

episode. Each method measures frequently during the middle of the episode as agent attempts to290

direct the lander safely towards the landing area. OSMBOA generally alternates between measuring291

and not measuring at each time step, whereas DMSOA typically takes many measurement steps292

followed by 1 to 2 steps without measuring before returning to measuring again. Similar to Acrobot,293

once OSMBOA estimates that it is on target to reach the goal it commits to never measuring again.294

When this estimate is erroneous, the leads to much longer episodes than necessary and the risk of295

crashing the ship.296
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Figure 3: Measurement behaviour of the best OSMBOA (left) and DMSOA (right) policies. Top:
Cartpole, centre: Acrobot, lower: Lunar Lander. For OSMBOA, blue indicates that no measurement
was made and orange indicates that a measurement was made. In the case of DMSOA, blue indicates
that a measurement is made after one step, orange indicates that a measurement is made after two
steps, and red indicates that a measurement is made after three steps. This figure reveals the very
distinct measurement behaviour between the two classes of AC-NOMDP agents.

6.2 Image-Based RL Results297

The objective in the pong Atari game is to bounce the ball off of your paddle and past the opponents298

paddle into its goal (3). The action space is 6-dimensional including do nothing, fire, move right,299

move left, fire right and fire left. The observation space is a (210, 160, 3) image. In the case of300

OSMBOA, a 210 by 1 vector of ones or zeros is added to each channel to indicate if the observation is301

fresh or stale. The agent gets an extrinsic reward of 1 for winning a match and 0 for each intermediate302

step. Each episode is composed of 21 matches and the intrinsic reward is 0.001.303

Figure 4: Mean and standard deviation of the
costed reward on the Atari Pong environment. DM-
SOA learns a policy that for a better costed reward.

The results in Figure 4 show learns a policy304

to achieve a higher costed reward. In general,305

DMSOA learns to be a better Pong player and306

requires fewer measurements. Additional results307

showing DMSOA’s advantage in terms of wins308

and intrinsic rewards can be found in Appendix309

A Figure 6.310

From our analysis for the measurement policies311

of each agent, we found that both learn to mea-312

sure less frequently when the ball is travelling313

away from their paddle. Alternatively, if the314

ball is near their paddle or the opponents pad-315

dle, each agent measures more frequently. Inline316

with the observations on Acrobot and Lunar Lan-317

der, when OSMBOA reaches a state from which318

it expects to win the match, it switch to not mea-319

suring for the remainder of the match. If the prediction is correct, it can achieve a greater reduction320

in measurements than DMSOA. If it is wrong, however, OSMBOA general loses the match. An321

erroneous prediction of this nature is particularly risky in a complex and dynamic environment.322
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7 Discussion323

The results indicate that DMSOA has a clear advantage over OSMBOA in terms of its convergence324

rate and the reduction in measurements and decision steps. We believe that the control action325

repetition capabilities of DMSOA improve its exploration of the environment and its understanding326

of the implications (positive and negative) of taking multiple steps without measuring. This helps it327

to quickly converge to good control and measurement policies. In addition, the fact that DMSOA’s328

multi-step action sequences always ends with a measurement of the final state provides it with a good329

grounding from with to select the next control action. On the other hand, because the extrinsic reward330

for intermediate steps is not available, there is the potential for more noise in the reward signal for331

longer DMSOA action repetition trajectories. Due to the fact that OSMBOA is limited to one-step332

action, noise in the reward is less of a concern. Although, DMSOA appears to handle the noisy333

reward signal, future work should examine this in more detail.334

For unshaped (or uniform) reward environments, such as Cartpole, Acrobot and Pong, setting the335

intrinsic reward is simple and the agent is insensitive to the value so long as it is slightly larger than336

the extrinsic reward. Alternative, the intrinsic reward requires fine tuning on environments with337

complex reward shaping such as Lunar Lander. As heuristic, we suggest starting the fine tuning from338

the mean of the extrinsic reward collected over multiple random walks in the environment.339

In multiple environments, we found that OSMBOA commits to not measuring towards the end of340

each episode. This is surprising since if OSMBOA takes more than one step without measuring, it341

enters a partially observable state. This is akin to playing the game with its eyes closed. The agent is,342

thus, unaware if any unexpected event occurs. On Acrobot and pong, this resulted in it not achieving343

the goal, or it taking much longer than otherwise necessary. An example of this is seen in episodes 1344

and 4 of the Acrobot plot in Figure 3.345

8 Conclusion346

In this work, we consider the problem of RL for environments where agent’s decision making and347

measuring of the state of the environment have explicit costs, namely AC-NOMDPs. We provide348

the first survey of methods recently proposed for AC-NOMDPs. Building on the existing work, we349

propose DMSOA, an RL algorithm learns a control and a measurement policy to reduce measurement350

and decision steps. Our empirical results confirm the previously published results for OSMBOA on351

Cartpole, Acrobot and Lunar Lander, and show that OSMBOA is also capable on the more complex,352

image-based Atari Pong environment. However, we find that our proposed method DMSOA learns a353

better control policy than OSMBOA, and requires fewer costly measurement and decision steps.354

This demonstrates the great potential to reduce measurement and decision costs associated with RL355

by allowing the agent to take control of its action and observation behaviour. We expect this to be a356

necessary capability of RL agents applied in many real-world applications. The next steps that we357

envision are developing more sophisticated loss functions for DMSOA, incorporating recurrency into358

the network to deal with time, expanding the analysis to additional methods and more realistic setting359

such as self-driving chemistry where observation can be costly and potentially destructive (2).360
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Figure 5: Mean and standard deviation of the performance on the Lunar Lander environment. Top left:
episode length, top right: sum of the number of successful landings, lower: costed reward. DMSOA
and OSMBOA achieve similar mean costed rewards. DMSOA, however, learns to successfully land
the ship more frequently and in fewer steps.

A Appendix: Results423

A.1 Lunar Lander424

The results for the Lunar Lander environment are presented in Figure 5. The Lunar Lander environ-425

ment is a rocket trajectory optimization problem (7). The objective is to fire the lander’s rockets such426

that it lands squarely in the target area. The fuel supply is infinite, but the best policy uses it sparingly.427

The environment has four discrete actions available: do nothing, fire left orientation engine, fire main428

engine, fire right orientation engine. The intrinsic reward is 0.1. The extrinsic reward is -0.3 for429

firing the main engine and -0.03 for side engines, the reward is also scaled by the lander’s distance430

from the landing pad. Ten points are added to the extrinsic reward for each leg that is in contact with431

the ground, and an additional 100 points are added for landing, while 100 points are subtracted for432

crashing. The episode ends when the agent lands or crashes, or is truncated after a maximum of 400433

time steps.434

The plot on the top left in Figure 5 shows that mean episode length is longer for OSMBOA than435

DMSOA, and the top right plot shows that DMSOA has significantly more successful landings. This436

indicates that DMSOA learns a policy that quickly navigates the ship to a safe landing. The lower437

plot shows that OSMBOA has a slightly higher costed reward. As suggested by the first two plots,438

this is due to the fact that it takes longer to land and not because the policies is superior.439

A.2 Image-Based RL Results440

The objective in the pong Atari game is to bounce the ball off of your paddle and past the opponents441

paddle into its goal (3). The action space is 6-dimensional including do nothing, fire, move right,442

move left, fire right and fire left. The observation space is a (210, 160, 3) image. In the case of443

OSMBOA, a 210 by 1 vector of ones or zeros is added to each channel to indicate if the observation is444

fresh or stale. The agent gets an extrinsic reward of 1 for winning a match and 0 for each intermediate445

step. Each episode is composed of 21 matches and the intrinsic reward is 0.001.446

The results in Figure 6 show that DMSOA wins significantly more matches than OSMBOA (top left),447

achieves a higher costed reward (top right) and more intrinsic reward (lower). Thus, DMSOA learns448

to be a better Pong player and requires fewer measurements. Due the longer episodes and training449

times, a measurement behaviour plot similar to Figure 3 is not feasible within the confines of this450

paper.451
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Figure 6: Mean and standard deviation of the performance on the Atari Pong environment. Top left:
sum of the number of wins, top right: costed reward, lower: intrinsic reward. DMSOA learns a policy
that wins more games with a better costed reward and fewer measurements.

From our analysis for the measurement policies of each agent, we found that both learn to measure452

less frequently when the ball is travelling away from their paddle. Alternatively, if the ball is near their453

paddle or the opponents paddle, each agent measures more frequently. Inline with the observations on454

Acrobot and Lunar Lander, when OSMBOA reaches a state from which it expects to win the match,455

it switch to not measuring for the remainder of the match. If the prediction is correct, it can achieve a456

greater reduction in measurements than DMSOA. If it is wrong, however, OSMBOA general loses457

the match. An erroneous prediction of this nature is particularly risky in a complex and dynamic458

environment.459
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