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Abstract

Using a generalizable novel nautical navigation environment, we show how dynamic
programming can be used when only incomplete information about a partially observed
Markov decision process (POMDP) is known. By incorporating uncertainty into our
model, we show that navigation policies can be constructed that maintain safety, out-
performing the baseline performance of traditional dynamic programming for Markov
decision processes (MDPs). Adding in controlled sensing methods, we show that these
policies can also lower measurement costs at the same time.
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1. Introduction

Uncertainty creates a major obstacle in solving control problems. The goal of these
problems is to construct a policy that is expected to produce optimal trajectories. In some
cases, uncertainty causes small deviations from the optimal trajectory, which are nevertheless
still acceptable solutions. For example, if a driver is uncertain of exactly which road they
are on, they might deviate from the optimal route to their destination; however, they can
still arrive via a less optimal route. In other cases, uncertainty can lead to highly undesired
results. With the previous example, if a driver is instead uncertain of where they are on the
road, this can result in a collision, which we refer to as a catastrophic failure. Even if these
deviations are symmetric in nature, catastrophic failure could be the most likely result.

Markov Decision Processes (MDPs) [1] are a common class of control problems that
are very well studied in both dynamic programming (DP) [2–5] and reinforcement learning
(RL) [6] (both traditional [7–9] and deep [10–12]). While the majority of MDP results are
simulated, there are real-world applications. The Airborne Collision Avoidance System X
[13] uses methods of solving MDPs with DP to aid actual operating aircraft to avoid collisions
in real-time, using a distribution of estimates for the state of the surrounding aircraft. We
will study problems like this through the formalism of Partially Observed MDP (POMDP)
[14] which we describe below and use to present a modified version of Bellman’s dynamic
programming equations, Equation (4.2). While POMDPs are also well studied in DP [15–
19], it is only more recently that they have been studied in RL [20–23].

In an MDP, the state of the system is known, however, in a POMDP it must be estimated,
leading to some amount of uncertainty. Much of the difficulty in solving a POMDP stems
from estimating the state of the system before choosing an action. This is where the majority
of research in this area focuses. Controlled sensing problems are a special type of POMDP
where some of the actions reduce uncertainty for a cost, rather than modifying the state of
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the system. Some work has been done in this area [14, 24–28], however, it is still largely
unexplored.

Separate from the question of the partial observation of the current state is knowledge
of the environment itself, i.e. the space of all possible states and how the available actions
cause transitions between them. Depending on how much of the system’s information is
available to the agent, different approaches are possible to optimize agent behaviour. DP
methods require full knowledge of the environment and thus amount strictly to optimization,
without “learning” per se. At the other end of the spectrum, RL methods assume little or
no access to information about the system; they involve learning from experience to deduce
which actions have the most desirable effects. In this work, we consider POMDPs whose
underlying MDP is fully known to the agent. The MDP setting allows for analytic solutions
via DP, and we propose a method to adapt such solutions to the related POMDP where the
agent must contend with uncertainty regarding its current state. While purely RL methods
could be used instead, they would not take into account the agent’s knowledge of the MDP.
Our work thus fills a gap, providing POMDP solutions in a DP-grounded rather than RL-
grounded approach. In particular, the settings we consider include the areas of controlled
sensing and traditional POMDPs.

The systems that this problem structure applies to include, but are not limited to: navi-
gation [13], healthcare [29], and even chemical experiments [30]. In a chemical experiment,
there are many variables to consider and even slight variations in them can change the out-
come of a reaction. While a chemist can record every step they have made throughout an
experiment, there will always be variations in the outcome. The only way to determine this
variation is to take various measurements, each with an associated cost. Hence the problem
of optimally performing an experiment while managing access to various measurements is
located in the combined space of traditional and controlled sensing POMDPs.

Nautical navigation has been the subject of several DP studies [31–33], however, the
primary focus has been on collision avoidance and route optimization (i.e. speed and fuel
consumption) rather than uncertainty and controlled sensing. Here we introduce a nautical
navigation environment described in detail in Section 3. We assume the agent has incomplete
access to the information of the system, which leads to a level of uncertainty. A set of
information-revealing actions (or measurements) are accessible that help reduce uncertainty
at a cost.

The main contributions we present here are: a novel nautical navigation environment
that allows for the control of the level of information and can be generalized to many
fields, a modified version of Bellman’s dynamic programming equations, Equation (4.2), and
policy construction for POMDPs with incomplete information, as well as POMDP solutions
that combine state altering actions with controlled sensing techniques that outperform the
baseline of non-adapted dynamic programming solution for the underlying MDP.

2. Background

An MDP is a paradigm consisting of an agent and an environment. The agent can interact
with the environment by taking actions that cause a transition from one state to another,
incurring a cost (also known as a negative reward) for that transition. The goal of the agent
is to minimize the cumulative cost, where cumulative cost can be defined in various ways.
Formally, a finite MDP is defined by the quintuple: (S,A, P, c, γ), where S is the state space,
|S| = n, A is the action space, P : A → Rn×n is the function of state-to-state transition
probability matrices, c is the cost function with c(s, a) = Es′∈Sc(s, a, s

′), and γ ∈ [0, 1)
is the discount factor which measures how important the expected future costs are when
choosing an action. For given states i, j ∈ S and action a ∈ A, Pij(a) is the probability
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that the system will enter state j given action a is taken at the present state i and c(i, a, j)
is the cost incurred by the agent by transitioning from state i to j with action a.

When solving an MDP, the goal is to find a policy µ : S → A that minimizes the expected
total cost incurred. In fact, an MDP combined with a policy forms a Markov chain with costs
associated with transitions. An optimal policy µ∗ is one that incurs the global minimum
expected cumulative cost when employed, where the global minimum is over all possible
policies. This can be expressed in terms of the value function V : S → R, where the value of
a state is the minimum expected cumulative cost at said state. The value function represents
how optimal any given state is, i.e. lower valued states are more optimal as they have lower
expected cumulative costs. When the MDP tuple is known completely, the value function
and optimal policy are both found by Bellman’s DP algorithm [2]: Vn(s) = mina∈A Qn(s, a)
and µ∗

n(s) = argmina∈A Qn(s, a), where the Q-function is defined as

Qn(s, a) = c(s, a) + γ
∑
s′∈S

Pss′(a)Vn−1(s
′), (2.1)

where V0 ≡ 0. Taking the limit as n → ∞ gives the optimal value function and policy. An
agent’s goal is to find a policy that minimizes the value function over all possible states.

Similar to MDPs, the goal of an agent in a POMDP is to minimize the cumulative
cost. Unlike in an MDP, the agent is not always able to directly observe the state of the
environment. Formally, a POMDP is defined by the septuple: (S,A,O, P,B, c, γ), where
S, A, P , c, and γ are defined the same as for MDPs, O is the observation space, and B
observation probability function. For a given state i ∈ S, observation j ∈ O, and action
a ∈ A, Bij(a) is the probability that the agent will observe j given that state i occurred
after taking action a.

When this tuple is known completely, the belief state, πt, is a probability distribution
over S and is updated by

πt =
diag(Bsot(at−1)|s ∈ S)PT (at−1)πt−1

σ(πt−1, o, a)
, (2.2)

where σ(π, o, a) = 1T
Sdiag(Bsot |s ∈ S)PT (a)π [14]. Similarly, a policy for POMDPs is a

map from this distribution on S to A. The optimal function and policy are then found
again by the modified Bellman’s DP algorithm [14] where Vn(π) is used instead of Vn(s)
and the Q-function is now defined as

Qn(π, a) =
∑
s∈S

c(s, a)π(s) + γ
∑
o∈O

Vn−1(T (π, o, a))σ(π, o, a), (2.3)

where V0 ≡ 0.
In a controlled sensing POMDP, the state transition matrix is typically independent of the

chosen action, but the observation and cost functions may not be. Note that measurement
actions that can be taken without the state changing, cause the transition matrix to become
the identity for that action. This is equivalent to time not advancing during this step.

The above methods for solving POMDPs use DP and assume the agent has complete
access to each element of the POMDP septuple. When solving a POMDP with RL, the main
difference from the DP solutions is that it is assumed that P , B, and c are not available to
the agent and must be learned. If the agent has incomplete access to this information, it is
ignored in RL algorithms. In the next section, we present a novel environment in which the
agent has incomplete access to information and controlled sensing actions.

3. Nautical Navigation Environment

To explore the concept of incomplete access to information POMDPs, we introduce a
nautical navigation environment, that serves as an easy-to-understand and very generaliz-
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Figure 1. (a) A graphical representation of the non-
measurement action space the agent can choose from
at each step. (b) The relationship of throttle and
speed through the water where the black dashed lines
represent the throttle discretization used in Section
5. (c) A graphical representation of how the non-
measurement actions map to the submarine’s displace-
ment. A represents the starting position of the sub-
marine. B represents the estimated final position of
the submarine based on the non-measurement action
chosen by the agent (or velocity through the water)
represented by the single arrow line. C represents the
true final position of the submarine where the true
path represented by the double arrow line is the com-
bination of B and the water current represented by
the triple arrow line (or velocity overland).

able system for our discussion. In this en-
vironment, the agent must navigate a sub-
marine through a set of islands to a speci-
fied circular target region. To navigate, the
agent must specify a heading and throttle
setting that provides a movement vector,
shown in Figure 1(a). Typically there is
a non-linear relation between throttle and
speed. In this case, speed through the wa-
ter is the square root of throttle, as shown
in Figure 1(b). An RL agent would have to
learn this relationship, however, in our case,
it can be included in our agent’s information
access setup. If the agent reaches the tar-
get region, it receives a negative cost (also
known as a reward) and if the agent crashes
into an island, it receives a large positive
cost. The trajectory terminates when either
of these cases occurs.

This system also contains water currents
that cause drifts from the expected trajec-
tory of the specified movement vector. To-
gether, the movement vector and water cur-
rent give the velocity of the submarine over
land, defining how the state of the system
changes. Unlike the set of island obstacles,
the exact water current is assumed to be unknown by the agent, (but it can be partially
observed indirectly). If the agent knows the movement vector chosen and their true position
before and after an action, the average water current over that action can be obtained from
the displacement between the expected and true final positions, as shown in Figure 1(c).

The unknown water current gives rise to a level of uncertainty in the movement of the
submarine, which in turn, gives rise to a level of uncertainty in the resulting position. The
agent has two measurement actions available to it, and can use them to help overcome these
uncertainties:

(1) GPS: Returns the true position of the submarine, therefore reducing positional
uncertainty to zero. This allows for the calculation of the average water current
between the previous and present GPS measurements. Hence, this measurement
slightly reduces the water current uncertainty, although not completely.

(2) Current Profiler: Returns the true water current for the true position of the
submarine, therefore reducing the water current uncertainty to zero. Note that
because the analytic water current is unknown, this measurement does not reveal
any information regarding the position of the submarine. Hence, the positional
uncertainty is unaffected.

Note that for these measurement actions, P (a) = I and cm(a) ≡ const. where the constant
is some specific instantaneous measurement cost assigned for employing that measurement
and cm(a) ≡ 0 for all non-measurement actions. These costs represent both the monetary
costs of using and maintaining each device and the time required to operate them.

Charts: The system the agent is navigating in is contained inside a rectangular area with
periodic boundary conditions and dimensions xmax and ymax. We call the pairing of this
area with the set of islands a chart. Each island obstacle is represented by a 2-dimensional
Gaussian function where the parameters are independently sampled uniformly to ensure
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Figure 2. A graphical representation of the process of generating a value function without
and with water currents. (a) Shows a chart without water currents and (b) shows the
same chart with water currents. (c) Shows V1 with a specified circular target region for
the charts with and without water currents. (d) Shows the optimized value function for
the chart without water currents and (e) shows the optimized value function for the chart
with water currents. Regions of notable difference between (d) & (e) are highlighted with
blue ellipsis, where each line style corresponds to a specific region.

convergence. We then define the land height function f(x, y) as the summation over several
islands. The notation for outputs of f(x, y) used here are: 0 is the ocean floor, 1 is sea level,
and 0.9 is the height at which the submarine operates, i.e. the agent navigating to any point
(x, y) such that f(x, y) ≥ 0.9 results in a crash. During a trajectory, the agent always has
access to the charts.

Water Currents: While it is assumed the agent does not know the analytic water
current, it is generated deterministically for each given land function. The water current
vector W (x, y) at (x, y) is perpendicular to ∇f(x, y) with magnitude bounded by wmax and
linearly related to −∥∇f(x, y)∥2.

4. Finding an Optimal Policy

With a navigation environment defined, we can now use it as an example of how to
develop a policy construction method. As the agent does not have complete knowledge of
the system, Bellman’s DP algorithms presented in Section 2 cannot be used directly. In
this system, if there are no water currents, or if the agent knows the water currents exactly,
the problem becomes an MDP, and Bellman’s equation is applicable. As we assume the
agent does not know the water current, we turn to the former to be the base model for
constructing a solution. In the next section, we present how to form this base.

4.1. Value Function

During a single trajectory, f(x, y) and W (x, y) do not change, therefore for simplicity,
we refer to the submarine position (x, y) as the state of the system. The velocity of the
submarine need not be included as we assume the time scale of acceleration and changing
directions is insignificant relative to the time between actions. In the first step in con-
structing our solution, we assume the system contains no water current, i.e. W (x, y) ≡ 0.
With this assumption, for any given chart we can generate a value function using Bellman’s
equation, where ∥M∥2 ≤ 1. To encourage faster routes, we introduce a fuel cost defined as
cf(a) = 0.01∥M∥2 for all non-measurement actions. We define the positional cost function
as cp(x, y) = 100 for any (x, y) such that f(x, y) ≥ 0.9, cp(x, y) = −1 for any resulting
submarine positions (x, y) inside the specified target region such that f(x, y) < 0.9, and
cp(x, y) = 0 otherwise. This gives us the cost function c(x, y, a) = cp(x, y) + cf(a) + cm(a),
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(a) (b)

(c) (d)

Figure 3. A graphical representation of how the positional and water current uncertain-
ties evolve throughout an action where the black dots represent the expected positions
and the blue shaded regions represent the uncertainty. The initial conditions are (a)
the position and water current are both known, (b) the position and water current are
both unknown, (c) the position is known and the water current is unknown, and (d) the
position is unknown and the water current is known.

where a ∈ A consists of a non-measurement component aM and a component measurement
action. Note that the trajectory terminates when cp(x, y) ̸= 0.

With the water current and cost function formally defined, we can now define the move-
ment of the submarine at any given time. For a specified movement vector M such that
∥M∥2 ≤ 1, the movement of the submarine is given by d(x, y,W,M, t) = (x, y) + t(M +
W (d(x, y,M, t))). The non-measurement action corresponding to M is then defined as
aM (x, y,W ) = d(x, y,W,M, t′), where t′ = sup{t ∈ [0, 1]|cp(d(x, y,W,M, t)) < 100}. Note
that t′ = 1 only occurs if the agent does not crash into an island during the action.

For any chart, with or without water currents, we have V0 ≡ 0 and V1(x, y) = mina∈A
c(x, y, a). Examples of a chart without and with water currents are shown in Figures 2(a)
and 2(b) with V1 for each case shown in Figures 2(c) and 2(d) respectively. If the water
current is known, Bellman’s equation for our system becomes

Vn(x, y) = min
a∈A

c(x, y, a) + γVn−1(aM (x, y,W )), (4.1)

where W ≡ 0 for Figure 2(e) and W = W (x, y) for Figure 2(f). In this system, (4.1)
results in a converged value function V after finite n. The converged value functions for
the examples above are shown in Figures 2(e) and 2(f) respectively, with three regions of
notable difference between the two circled. As we assume the agent does not know W (x, y),
we continue with the value functions of the type in Figure 2(e) for the next section.

4.2. Policy Construction

With the water current unknown, the goal is to construct a policy in a similar manner to
the value iteration algorithm for POMDPs in (2.3). Doing so requires using the expected
states and uncertainty to determine the agent’s belief state. At the initial step of each trajec-
tory, the agent knows the true initial submarine position and water current for that specific
position, therefore uncertainty in both is zero. This is the first case of four considered. As
the water current changes when the submarine moves away from this position, uncertainty
in the water current grows during any non-measurement action taken, leading to the growth
of uncertainty in the position shown in Figure 3(a). With the expected trajectory based
on the known position, starting water current, and action taken, this gives us a distribu-
tion of trajectories that may occur. Therefore each possible non-measurement action can
be assigned an expected value and instantaneous cost based on these distributions. Then
the policy chooses: select the non-measurement action with the lowest expected value (i.e.
lowest expected total cost) based on the distribution of trajectories.

During all subsequent steps of the trajectory, the agent has an expected position and
water current, however, it also has uncertainty in both these estimates. This is the second
case. As before, uncertainty in position increases due to uncertainty in the water current
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growing over time. However, uncertainty in position also increases due to the initial non-zero
uncertainty in the water current. This combination leads to the growth of uncertainty in
the position shown in Figure 3(b), where the initial positional uncertainty is now non-zero.
As before, this gives us a distribution of trajectories that may occur. Hence each possible
non-measurement action can be assigned an expected value and instantaneous cost. The
uncertainty growth rate is the rate the agent’s uncertainty of the water current increases over
each action. The agent’s uncertainty of position increases relative to the uncertainty of the
water current, not just the uncertainty growth rate. The maximum water current magnitude
represents the true uncertainty that is present in the system, whereas the uncertainty growth
rate represents the uncertainty the agent assumes is present in the system.

As mentioned before, the agent has access to two types of measurements to reduce this
uncertainty; each with an associated instantaneous cost. If the lowest expected instanta-
neous cost of any action is greater than the cost of any of the available measurement actions,
the policy chooses to take a measurement. If the expected position of the submarine is inside
the target region, the policy chooses to specifically take a GPS measurement. Otherwise,
the policy chooses to select the non-measurement action with the lowest expected value
based on the distribution of trajectories.

If the GPS measurement is taken, the positional uncertainty goes back to zero and the
water current uncertainty is slightly reduced; however, it is still non-zero. This is the third
case. During any non-measurement action now, the positional uncertainty grows similar
to the second case, with however, an initial positional uncertainty of zero, shown in Figure
3(c).

If the current profiler measurement is taken, the water current uncertainty goes back to
zero and the positional uncertainty is unaffected, therefore still non-zero. This is the fourth
case. During any non-measurement action now, the positional uncertainty grows similarly
to the first case, with however, an initial positional uncertainty of non-zero, shown in Figure
3(d).

In either the third or fourth cases, the expected values and instantaneous costs must be
re-determined for each non-measurement action. If the lowest expected cost is greater than
the cost of the other measurement, that measurement will also be taken, bringing the agent
back to the first case. Otherwise, the policy chooses to select the non-measurement action
with the lowest expected value based on the new distribution of trajectories.

In this problem we are assuming the agent does not have access to all components of the
POMDP tuple, therefore we must replace the hidden Markov model filter with something
that incorporates the uncertainty of our system. This gives us the modified Q-function

Q(x̂, ŷ,σp, Ŵ , σw, a) =
1

16σ2
pσ

2
w

"
σp

"
σw

(
c(x̂+ x′, ŷ + y′, a)

+ γV (aM (x̂+ x′, ŷ + y′, Ŵ + (wx, wy)))
)
dwxdwydx

′dy′,

(4.2)

where
!

σ
is the 2D integration over the circular region of radius σ centered at the origin,

(x̂, ŷ) is the agents estimate of their position, Ŵ is the agents estimate of the local water
current, σw is the water current uncertainty, σp is the positional uncertainty. We also define

Q(x̂, ŷ, σp, Ŵ , 0, a) =
1

4σ2
p

"
σp

(
c(x̂+ x′, ŷ + y′, a) + γV (aM (x̂+ x′, ŷ + y′, Ŵ ))

)
dx′dy′,

Q(x̂, ŷ, 0, Ŵ , σw, a) =
1

4σ2
w

"
σw

(
c(x̂, ŷ, a) + γV (aM (x̂, ŷ, Ŵ + (wx, wy)))

)
dwxdwy, (4.3)

Q(x̂, ŷ, 0, Ŵ , 0, a) = c(x̂, ŷ, a(x̂, ŷ, Ŵ )) + γV (aM (x̂, ŷ, Ŵ )).

Our policy is then constructed by choosing the non-measurement action that minimizes the
Q-function. If the expected cost of that action is greater than the cost of the measurement
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actions, then a measurement action is taken instead (with the GPS taking precedence over
the current profiler).

5. Computational Set-up

For computational purposes, we discretize the action space to 96 non-measurement actions
for the agent (6 throttle settings and 16 heading directions), state-space to a resolution of
152×152 for the value function, and integrals in (4.2). Note that only the input to the value
function is discretized and the actual state-space remains continuous. As the relationship
between speed through the water and throttle is included in the agent’s incomplete access to
information, the discrete actions available are chosen such that the non-measurement action
choices are linear with respect to speed through the water for simplicity, as shown in Figure
1(b), inclusive of 0 and 1.

For the chart generation, we have xmax = ymax = 10 for all charts and a varying number
of islands 0 ≤ N ≤ 20. We consider 1 ≤ N ≤ 5 charts of low island density, 8 ≤ N ≤ 12
charts of medium island density, and 16 ≤ N ≤ 20 charts of high island density. 100 charts
of low density density, 150 charts of medium density, and 250 charts of high density will
be used with 10 different initial states each. The maximum water current magnitude and
the linear rates at which the uncertainty used in a policy grows (uncertainty growth rate)
will be parameters of experimentation, each varying from 0 to 1. The estimates in water
currents are bounded by ∥Ŵ (x, y)∥2 ≤ wmax. The GPS measurement has a cost of 0.45 and
the current profiler measurement has a cost of 0.1.

6. Results

Based on preliminary tests, it is possible that a trajectory can be cyclic and these (po-
tentially) infinite trajectories are typically the only ones that lasted more than 25 steps. For
this reason, we limit all trajectories to 25 steps. We consider the following three types of
outcomes: a policy that reaches the target within 25 steps is considered successful, a policy
that crashes within 25 steps is a failure, and a policy that neither is successful nor a failure.

For each chart, a value function is generated using the method described in Section 4.1.
For each initial state, a policy is constructed several times using the method described in
Section 4.2, where the uncertainty growth rate is varied. An uncertainty growth rate of
zero is equivalent to using Bellman’s equation and assuming there does not exist any water
current.

Figures 4(a)-(c) show the success rate as a function of uncertainty growth rate and max-
imum water current for policies constructed for low, medium, and high island densities,
respectively. When the maximum water current is zero, the uncertainty growth rate does
not affect the agent’s behavior due to the upper bound on the water current estimates.
Without any water current, the problem is equivalent to the MDP problem initially used
to generate the value functions. Hence, the agent succeeds in 100% of the charts for all
three island density sets, which is expected as the agent has the true value functions for the
problem, however, this is no longer true once the maximum water current is non-zero.

For an uncertainty growth rate of zero, the agent performs quite well at extremely low
maximum water currents and lower island densities. However, even for low (non-zero)
maximum water currents, the agent’s performance begins to decline for charts with higher
island densities, succeeding in less than 90% of charts. As the maximum water current
increases the agent’s performance steadily decreases to the point it succeeds in 0% of all
charts. This drop to a 0% success rate is most notable in the charts with higher island
densities.
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Figure 4. Policy statistics constructed over 500 unique charts for various uncertainty
growth rates and maximum water currents. (a)-(c) The agent’s success rate, where
success means the agent navigated the submarine into the target area for low, medium,
and high island densities, respectively. (d)-(f) The agent’s crash rate for low, medium,
and high island densities respectively. Note that the agent’s success and crash rates
do not include the cases where the agent’s trajectory lasts more than 20 steps. In all
cases, a maximum water current of 0 is equivalent to no water current existing and an
uncertainty growth rate of zero is equivalent to using standard DP for MDPs.

Excluding a few outliers for the more extreme maximum water currents, even the smallest
tested non-zero uncertainty growth rate outperforms the zero case in charts of all island
densities. For maximum water currents less than 0.45, 0.4, and 0.35, there exists at least
one tested uncertainty growth rate that gives the agent a success rate of 100% for all charts
of low, medium, and high island densities, respectively. At those maximum water currents,
when using a non-zero uncertainty growth rate the agent is able to get an increase in success
rate of up to 58%, 67%, and 63% for all charts of low, medium, and high island densities.

While the specific non-zero value for the uncertainty growth rate does not make much
difference in the agent’s success rates at lower maximum water currents, it matters sig-
nificantly for larger maxima. For the larger maximum water currents, the agent’s success
rate increases on average as the uncertainty growth rate increases (approximately 0.7). The
agent’s success rate begins to decline on average once the uncertainty growth rate is increased
beyond this point. At these high uncertainty growth rates, any target remotely close to an
island appears too risky to reach, i.e. the expected cost due to crashing is greater than the
expected negative cost of succeeding.

The trends discussed here all tend to break for the largest maximum water currents
as the agent’s success rate stays close to 0%. For maximum water currents near 1.0, the
displacement caused by the water current can be as large as the distance the agent can
possibly cover in a single action. This can make it impossible for the agent to overcome the
water current and reach the target in most cases, regardless of the uncertainty growth rate
or method used.

Figures 4(d)-(f) instead show the crash rate as a function of uncertainty growth rate and
maximum water current for policies constructed for low, medium, and high island densities,
respectively. In the cases the agent’s success rate is near 100% the crash rate must be near
0%, however lower success rates do not imply higher crash rates. For an uncertainty growth
rate of zero, the agent’s crash rate increases at a similar rate to the decrease in success rate
as the maximum water current is increased, reaching 80% in some cases.
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Figure 5. An example trajectory of a successful policy
on a high island density chart. The white circle rep-
resents the agent’s starting position. The black lines
represent the agent’s true trajectory, where each white
outlined circle indicates the points when the agent was
required to select an action. The magenta lines repre-
sent the agent’s estimated trajectory, where the trans-
parent magenta shading represents the magnitude of
uncertainty and each magenta outlined circle repre-
sents when the agent was required to select an action.
When a white-outlined circle is connected to a ma-
genta one, this represents when the agent takes an ac-
tion and does not use the GPS measurement. When
a magenta-outlined circle is connected to a white one,
or when no magenta-outlined circle is present for that
step, this represents when the agent takes an action
and then uses the GPS measurement. The transpar-
ent green circle represents the target region.

When the maximum water current is in-
creased, we see a similar trend for the lower
non-zero uncertainty rates as before, where
the crash rate increases simultaneously as
the success rate decreases. The increase in
crash rate is much less significant compared
to the zero case though, even as the success
rate goes to 0%. Therefore, even when the
agent does not succeed, it is much better at
managing to avoid islands. For the largest
of the maximum water currents, even the
smallest non-zero uncertainty growth rate
decreases the crash rate by over 25%.

Regardless of the success rate, we see the
crash rate drop to (or near) 0% for larger
uncertainty growth rates. The larger un-
certainty growth rates use the extremes of
water current estimates, therefore the agent
uses most actions avoiding islands, rather
than reaching the target. The crash rate
slightly increases again for the charts with
higher island densities at larger uncertainty
growth rates and maximum water currents.
In these cases, the uncertainty of each ac-
tion is so large that the agent estimates they
will all end in crashing. The “safest” action
in these cases is then to do nothing, in which
case the water current causes the agent to
drift into an island, resulting in a crash.

In every case, the agent uses slightly less
than one measurement per action on aver-
age. If the agent were to use both the GPS and current profiler measurements for every
action, it would result in an average measurement cost of 0.55 per action. Our agent’s
measurement costs fall into three regimes based on the uncertainty growth rate: approxi-
mately 0.2, 0.3, and 0.45 for uncertainty growth rates less than 0.25, between 0.25 and 0.45,
and greater than 0.45, respectively. For small uncertainty growth rates, we have a large
reduction, and for large uncertainty growth rates we have a minor, but non-zero, reduction
in measurement costs. This tells us to choose the smallest uncertainty growth rate that
results in the largest success rate for any given maximum water current, thus minimizing
measurement costs without sacrificing navigational safety. An example of a successful policy
trajectory in a high island density chart with a non-zero water current magnitude is shown
in Figure 5.

7. Conclusions & Future Work

Motivated by the real-world applicability of POMDPs and systems with uncertainty, we
have shown that incomplete access to information can be leveraged with DP methods to
construct navigational policies that both maintain safety and reduce total measurement
cost. The navigation environment we introduced serves as a relevant introduction to the
problems of interest in the combined area of traditional and controlled sensing POMDPs.
The methods provided allow the construction of value functions through DP that contain the
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basic information of the system of interest. We show that without any additional constraints
(uncertainty growth rate of zero), the policies produced using these value functions perform
very poorly. However, when uncertainty methods are included, the success rate on average
is doubled and the crash rate is brought to (or nearly to) zero.

While the method shown here has been quite successful, it is not perfect. The success
of using a fixed uncertainty growth rate makes the assumption that the maximum water
current is known. We would like to include an adaptive uncertainty growth rate in future
versions of this algorithm. This adaptive method could be a neural network-based learned
mapping from charts to optimal uncertainty growth rate for that trajectory or a constantly
updating value based on calculated average water currents between GPS measurements. For
further comparison of our method’s performance, we would like to develop a deep RL-based
policy as well.
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