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Abstract

Linear Temporal Logic (LTL), a formal behavioral specification language, offers a
mathematically unambiguous and succinct way to represent operating requirements for
a wide variety of Artificial Intelligence (AI) systems, including autonomous and robotic
systems. Despite progress, learning policies that reliably satisfy complex LTL specifica-
tions in challenging environments remains an open problem. While LTL specifications
are evaluated over infinite sequences, this work focuses on solving objectives within a
given finite number of steps, as is to be expected in most real-world applications involv-
ing robotic or autonomous systems. We study the problem of generating trajectories of a
system that satisfy a given LTLy specification in an environment with a priori unknown
transition probabilities. Our proposed approach builds upon the popular AlphaGo Zero
Reinforcement Learning (RL) framework, which has found great success in the two-player
game of Go, to learn policies that can satisfy an LTL; specification given a limit on the
trajectory duration. Extensive simulations on complex robot motion planning problems
demonstrate that our approach achieves higher success rates in satisfying studied spec-
ifications with time constraints compared to state-of-the-art methods. Importantly, our
approach succeeds in cases where the baseline method fails to find any satisfying policies.

Keywords: Reinforcement Learning (RL), Monte-Carlo Tree Search (MCTS),
Linear Temporal Logic (LTL), Planning, Robotics

1. Introduction

LTL provides a concise and expressive language to formally express objectives, con-
straints, and temporal requirements in a broad range of applications, including autonomous
systems. That is why it has become a popular choice for high-level task specification for
agents in many Al domains for tasks such as planning, robot control, and navigation, espe-
cially in recent years [1-4]. However, synthesizing policies for these systems can be difficult
for complex specifications or challenging environments. Recently, RL-based methods have
demonstrated promise in solving such cases [1, 2, 4, 5] (more details in Sec. 2).

The semantics of LTL are designed with the assumption that the system in question will
produce an infinite trace of states, yet that might not be realistic in practice. When dealing
with physical systems, such as robots, it is reasonable to assume access to limited resources.
Taking action in the real world takes energy and time and causes wear to the equipment.
In the current work, time is considered a limited resource when synthesizing policies by
limiting the trajectory’s maximum duration. To evaluate a finite trajectory against an LTL
specification, a variant language called LTL; [6] can be used. LTL; uses the same syntax
as LTL, but its semantics assume interpretations are done over finite traces.

Among the frameworks in the domain of Machine Learning (ML), RL offers a potential
framework for learning policies that can satisfy complex tasks specified as LTL; objectives,
acting as the reward function for the RL algorithm. Despite its advantages, constructing
reward functions (in the context of RL) using LTL; remains a difficult problem. The
primary challenge in this setup stems from the lack of an immediate outcome in evaluating
an LTLy formula over states in a trajectory, resulting in sparse rewards. LTLs evaluation
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produces a boolean value indicating whether the given trajectory o - a history of states -
satisfies the LTL; formula or not. With this interpretation, a positive reward can only be
achieved by making no mistakes throughout the entire run. Conversely, not satisfying the
specification provides no information about the extent of the violation or when it occurred.
As RL approaches typically rely on a notion of reward propagation to produce their policies,
dealing with sparse rewards often proves challenging [7]. A common approach [1, 3, 4] to
deal with sparse rewards is to utilize a more informative construct indicating the degree
to which the specification has been satisfied, e.g., via Limit Deterministic Biichi Automata
(LDBA), Deterministic Rabin Automata (DRA), Reward Machines (RMs), etc.

Example 1.1. Consider Fig. 1 inspired by the craft-worlds in [2]. The objective of the
robot is to collect wood and iron (in order) and take them to the factory to build a bridge.
This task can be formally written at a high level in LTLy: O(wood A Q(ironA O factory)) or in
English: Eventually gather wood, and then eventually gather iron and then eventually visit
the factory. (see Sec. 3.1 for details on the syntax of LTLy)

Another challenge in this domain is the sub-

stantial increase in the required number of sam- o
ples for accurate reward propagation and esti-
mation of states, particularly over complex spec-
ifications and extended horizons. Consequently, =l
a sampling method such as Monte-Carlo Tree * 3 v W ’
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of the learned policy. MCTS has historically s W
demonstrated its effectiveness in highly intricate 8 ¥ # R
problems with vast state spaces ([8] goes over —
a comprehensive list). When combined with a
guiding heuristic like a neural network, MCTS ‘ v
has proven capable of remarkable performance 6 a == sl
in numerous tasks [9] [10]. Drawing inspiration
from how AlphaGo Zero [1 1] uses the same tech- figure 1. Anexample of a tasl'< in the craft-W(?rld

. . . (see Sec. 5.1.2 for more details) and a possible
plque’ we ha.ve _Crafted our solution .fOI' satisfy- trajectory that satisfies it. More details of the
ing LTLy objectives (such as the one in Example  (h¢ task in Example 1.1.
1.1) in potentially stochastic environments (like
Fig. 1) described via an MDP.

Contribution: The main contribution of this work is a proposed model-free Monte-Carlo-
based RL approach for learning policies to satisfy LTL specifications within a given number
of time-steps. Through extensive simulations, we show it can learn robust policies for
problems characterized by complex formulas, even in stochastic environments with multiple
unsafe regions and a high risk of violating the specification, all while requiring no knowledge
of the MDP that defines the environment dynamics. In these challenging cases, our approach
outperforms state-of-the-art methods that fail even in the deterministic setting.

Outline of the paper: Sec. 2 discusses the related work in this domain. After that,
the preliminaries and the problem formulation are presented in Sec. 3. The details of
the proposed method are then discussed in Sec. 4. Subsequently, Sec. 5 shows the results
obtained from three scenarios, including comparisons with another RL-based state-of-the-art
approach. Finally, Sec. 6 concludes and summarizes this work in a brief discussion.



2. Related Work

Policy synthesis for systems with LTL specifications has been well studied [12-16] how-
ever, there remains the challenge of generating policies that satisfy complex specifications
in large or stochastic environments such as the ones considered in this work (see Sec. 5.1).
Here, the discussion is restricted to RL-based methods dealing with LTL specifications.

In [1], the authors frame the task of synthesizing control policies for LTL specified prob-
lems as a model-free, Q-learning problem. it involves integrating the environment’s MDP
and an LDBA corresponding to the given LTL formula to construct a product MDP. Simi-
larly, [5] tackles the problem of satisfying the LTL formula as a two-player zero-sum game
between the agent and the environment. However, the environment can dynamically react
to the agent’s actions in that setting which is not the case in the current work where only
a non-reactive (but possibly stochastic) environment is considered. Both [1] and [5] rely on
the propagation of rewards in the product system based on the Bellman equations, which
suffers from slow reward propagation if the corresponding product system lacks a sufficient
number of states with positive rewards or if those states are unlikely to be reached (like
the sequential delivery case study in Sec. 5.1). Moreover, similar to most of the work in
this domain, [1] and [5] assume an infinite time horizon for solving their tasks. This leads
to lower success rates for finite runs compared to this work, despite the optimality of the
solution for trajectories of unbounded duration.

Authors of [17] introduce a new method for creating off-policy data from on-policy runs
to be used via Q-learning to learn policies for a broad set of applications. As demonstrated
in Sec. 5.2, Q-learning-based approaches for LTL specification policy synthesis can struggle
to scale as environments become challenging and stochastic. Furthermore, [17] is prone
to learning instability, especially with complex specifications, as it relies on counterfactual
experience replay, meaning it generates data that is possibly not valid for its training.

Decomposing the LTL task into sub-tasks has been explored in [18] where multiple co-safe
LTL tasks are taught to an RL agent. Co-safe LTL is less expressive than LTL;. More-
over, [18] suffers from an exponential growth of the number of decomposed sub-tasks and Q
functions it needs to learn, which can quickly become a problem if the given specifications
consist of multiple conjunct parts. The problem becomes more profound if the Q functions
are implemented as neural networks as their training could get computationally infeasible.

To tackle the sparse rewards problem, [3] and later [19] proposes Reward Machines (RMs),
that form the basis of their proposed Q-learning for Reward Machines (QRM) framework.
Aside from not taking time limits into account, the construction of reward machines is
a manual task and requires expert knowledge to build suitable machines for any given
specification. The current work exploits product systems that can be built automatically
with no expert knowledge. Furthermore, QRM does not generalize by default to stochastic
environments for the same problem it was meant to solve in the deterministic setting.

Unlike the other works discussed, the work in [20] proposes a way to take into account
the MDP cost associated with the movement of the robot while trying to achieve optimal
solutions for a LTL task. This is similar to our assumption of limited resources when devising
a solution. Their approach assumes access to a lower bound on the transition probabilities
in the underlying MDP, but the current work does not require such information.

Authors of [21] use the compositional syntax and the semantics of LTL to learn policies
that generalize to previously unseen specifications during training. They encode LTL formu-
las into Graph Neural Networks and offer a general framework to deal with new randomly
generated specifications. In their case studies however, they do not use the full grammar of
LTL, and use a context-free fragment of it which is less expressive than LTL;. For example,
the office-world task studied here (Sec. 5.1) cannot be expressed in their setup.

Using a notion of time windows to address loop requiring specifications in finite time
steps, [22] proposes a new task-specification language: Geometric LTL. Their case studies



are much simpler than the ones studied here, both in the complexity of the environment (size,
number of items in the world, and the amount of stochasticity) and, the LTL specification.

Recently, [4] proposed the use of trajectory transformers to satisfy LTL; specified tasks
simulated in mini-grid environments. It uses deterministic finite automata (DFA) to deal
with sparse rewards. However, the LTLy specifications and the environments tested in their
work are significantly simpler than the ones considered here.

While avoiding the pitfalls of the approaches discussed above, we propose a model-free
RL method that can deal with any LTL; specification. Through extensive simulations, we
show our approach is scalable to a wide variety of complex problems and can learn robust
policies to solve these tasks in potentially stochastic environments with a priori unknown
transition probabilities.

3. Prerequisites and Problem Formulation

This section briefly discusses the building elements of our problem setup and then formally
defines the problem formulation.

3.1. Prerequisites

Markov decision process (MDP): The environments discussed in this work are modeled
as (potentially stochastic) MDPs, with their transition probabilities not directly available
to the agent. A Markov decision process (MDP) is defined as a tuple (S, sg, A, P, R) where
S is a finite set of discrete states, sg € S is the initial state, A is a finite set of actions, P
is the transition probability function, P(S,a,S’) = Pr(s;+1 = §'|s; = s,a; = a) mapping
each state-action pair to a next state with certain probabilities, and R: S x A x S — R is
a reward function. Given a set of atomic propositions AP, where each member represents
a statement about the state of a system (like visiting a factory in Example 1.1), an MDP
could be augmented by a labeling function L : Lgy,(s) — {True, False}, mapping each
atomic proposition ap to a boolean value given a state s of the MDP. By adding L and AP
to the MDP it becomes a labeled MDP. The labeling function is needed for evaluating LTL
formulas over sequences of MDP states as explained in the LTL description below.
Linear Temporal Logic over Finite Traces (LTLj): LTL; [6] is a variant of the
formal language LTL [23] used to express temporal constraints for a system by providing
a set of logical operators. From a syntactic perspective, LTL¢ formulas are written as a
combination of atomic propositions with Boolean and temporal operations. The Boolean
operations include: True (T), False (L), negation (—), conjunction (A), disjunction (V),
implication (=). The temporal operations include: Always (O), Eventually (), Next (O),
and Until (U). The grammar of this language can be represented in Backus-Naur form as
shown below. A formula ¢ can be created as:

pu=ap|True| o[ o1 A2l O¢lerUeps
The rest of the operators (False, V, (,0, =) can be derived via this grammar (see [23]).

A trajectory of visited labeled MDP states can be evaluated against an LTL formula by
checking the sequence of observed labels (true or false) for each ap against the LTL formula
(see [6] for details). This evaluation will generate a boolean reward. As an example, the red
trajectory in Fig. 1 satisfies the LTL; formula in Example 1.1 and would produce a reward
of one. The current work uses these boolean rewards instead of an immediate reward (from
a reward function R in the MDP definition) when learning its internal estimates of how
good a state is when training the network (Sec. 4.1) and during MCTS (Sec. 4.4).

Limit Deterministic Buchi Automata (LDBA): LDBAs provide a way to represent
an LTL formula via a transition system where states encode information about the truth
of sub-formulas of the LTL formula and transitions capture how these truths evolve given



a sequence of inputs. In our case, these inputs are the true observed MDP labels during a
trajectory. An LDBA can be defined by a tuple (@, qo, %, d, F') where @ is a finite set of
the LDBA states and ¢g € @Q the initial state, X is a finite set of the LDBA alphabet, ¢ is a
transition function Q x ¥ — 29, and F is a set of acceptance states. Further details of the
LDBA structure are available in [24].

Product Markov decision process (MDP): The product MDP can be seen as the
Cartesian product of an LDBA and an MDP. The product MDP states include information
about both the MDP state and the LDBA state of the LTLy specification. Given a labeled
MDP and an LTL; formula along with its corresponding LDBA, the product MDP can be
constructed as (S*, s§, A*, P*, F'*) where S* = S x @ is the set of all possible pairs of MDP
and LDBA states. s{ is the initial state of the product MDP, A* is the MDP action set
augmented with the LDBA’s epsilon actions (see [24]), F™* is a set of accepting states € S*,
and P* is a transition function mapping a state pair s; = (s;,¢;) to another s} = s(;,q;)
with a certain probability for an action a* and LDBA label input (a*, L(s;)). Details of the
construction of the product MDP are available in [25].

3.2. Problem formulation

Problem 1. For an environment represented via a labeled MDP M with a priori unknown
transition probabilities and its initial state so, an LTL; formula ¢ describing the task speci-
fication, and a time horizon T': find a sequence of labeled MDP states 0 = {Sg, S1,...,S7-1}
such that their corresponding observed labels satisfies .

The following section explains how the proposed approach solves Problem 1.

4. Proposed methodology: solving LTL; tasks via RL

The RL framework in this work uses a combination of Monte-Carlo rollouts (i.e., trajec-
tory samples from a given state) and a neural network to select actions that lead to a higher
probability of satisfying the task. Overall, the network acts as a guide for MCTS, helping
it focus on promising actions so it requires fewer samples. MCTS on the other hand, helps
train the network by providing improved policies for each state and provides the agent with
policies at each step to choose its actions. These two components and their adaptation to
solve Problem 1 are explained in this section along with Fig. 2 illustrating an overview of
the proposed framework. Alg. 1 provides these steps in more detail.
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Figure 2. The overall procedure of how the proposed method works (see Sec. 4). At
each state, actions are sampled from the improved policies gathered via MCTS, then
used to train the network which in turn helps the MCTS with better rollouts later on.

4.1. Neural network for policy and value function estimation

The actions MCTS chooses during its rollouts are guided by a neural network. The net-
work takes as input an encoded product MDP state, s* € S§* as a multi-channeled matrix,



passes it through multiple Conv2D and Dense layers and outputs: i) a probability distribu-
tion p over the set of actions, as the prior policy for unexplored nodes in MCTS and ii) a
real value v indicating the probability of satisfying the task from s*. Thus, unlike AlphaGo
Zero our network does not require a history of visited states as input. The corresponding
loss function of the network (from [11]) for a given input s* is:

L(encoded(s*)) = (rurr, —v)* —n" logp + ¢||0]| (4.1)
where v € (0,41) is the network’s predicted value and, p € R*"™4") is the network’s
suggested policy. 7 : §* — A* is the improved MCTS policy (see next subsection for
details). rprL, is the Boolean reward of the entire episode (stage @ in Fig. 2). The last
term is the L2 regularization for the network’s parameters 6 and its coefficient ¢, which
determines the amount of regularization when training the network weights®.

4.2. MCTS for policy improvement

In this work, the agent and its internal MCTS explore the same product MDP state
space. MCTS maintains a tree where nodes represent the product MDP states, and edges
are possible transitions to the next states. The results of MCTS rollouts from each state
s* are kept in its corresponding node in a set of parameters. These parameters include
N(s*): visit counts of the node’s children, W (s*): accumulated backed-up rewards through
the node’s children, Q(s*) = W (s*)/N(s*): average backed-up rewards through the node’s
children and, P(s*) the prior policy for the node. Whenever MCTS encounters a new node,
it queries the network to get this prior, possibly along with a value (see Sec. 4.4 for details)
and updates the rest of the parameters as it gathers more samples (more details in [11]).

As described in Alg. 1, at each step of the episode with the agent in state s} (stage @ in
Fig. 2), S number of MCTS rollouts are performed (stage @), which result in a probability
distribution over the possible actions (i.e., a policy) m; for that state. This policy is usually
better than the prior policy suggested by the network for s; and so, the agent samples from
this policy at the ¢! step to choose an action (stage @), and keeps it in a buffer as the
target to train the network’s policy output for s} based on Eq. 4.1.

4.3. From the game of Go to LTL; objectives

Our proposed method draws inspiration from AlphaGo Zero [11], but differs from it since
satisfying an LTLy task fundamentally differs from the game of Go. The main differences
and our adaptation of the MCTS (component @ in Fig. 2) are described below.
Revisiting states within a run: A fundamental difference between Go and instances
of Problem 1 is that in each episode of a game of Go, no state is visited more than once.
This is not generally true, e.g., in a robot navigation task the agent could revisit the same
states. The following issue explains why this makes our agent prone to exploring repetitive
states that do not advance the product MDP state in any meaningful direction. Origi-
nally, AlphaGo Zero relies on a variant of the PUCT algorithm [26] to balance exploration-
exploitation in its MCTS search. But, due to binary evaluations over finite traces, if MCTS
fails to find a satisfactory trajectory after gathering some samples, revisiting the same states
over and over will have the same result as exploring the environment with no success since
both are returning the same rewards. Early experiments confirm this issue as MCTS even-
tually ends up oscillating between a few repetitive states, not learning anything new. This
fact suggests MCTS as implemented in AlphaGo Zero must be modified to solve instances
of Problem 1, as it makes exploring the product MDP state space a challenge.

'More details about the network architecture can be found at rrl-ltl.github.io/RRL-LTL
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Lack of a second player: Another difference between Go and the problems studied here is
that Go can be played in a self-play framework. In this framework, when their agent loses a
game, the opponent (which is the agent itself) has won. So their agent can always learn what
to do to win a game. In our setup, however, only receiving zero rewards (i.e., not solving
the task) is insufficient to guide the agent towards satisfying the LTL; specification. The
self-play framework also provides the AlphaGo Zero agent with an opponent that gradually
improves along with it. This does not apply to our problem setup, making the learning
problem more challenging.

4.4. Adapting MCTS for LTL; objectives

The following describes some of the main modification to MCTS for solving Problem 1.

(1) When encountering a new state (leaf node): If the agent has satisfied the specifica-
tion so far during training, query the network for a predicted value. If not, return
a positive reward.

(2) If the depth limit is reached: evaluate the trajectory, if it satisfies the specification,
return a positive reward, else return zero.

Regarding the first point, if the agent has not seen any satisfying trajectories during
training, the network has not seen any meaningful positive rewards yet. So the network
will output arbitrary values which do not provide helpful guidance for MCTS. Therefore,
until at least one satisfactory trajectory has been generated, MCTS will return a constant
positive value (less than one) upon visiting a new node, which encourages visiting new states.
Upon satisfying the specification once, the algorithm switches to consult the network for
its suggested values. This strategy mitigates the challenge of exploration mentioned above.
The second point states how MCTS evaluates a full rollout. The positive reward that MCTS
backs up is more than or equal to one. There are two reasons for this. First, this reward
must be greater than the positive reward of finding a new node. Also, as mentioned when
discussing the lack of a second player, our approach critically relies on MCTS finding a
satisfactory rollout at some point. Therefore, once such a rollout is found, its reward must
be significant enough to ensure the same trajectory will be sampled again.

Algorithm 1 generating a trajectory to satisfy a LTL¢ formula

Input: Trajectory duration 7', The product MDP, LTL; formula ¢, labeling function L,
the network net(#), MCTS #samples S, and search _depth
Initialize ), N, P, W, with zero, and with appropriate dimensions
Initialize 0,11 as empty lists > Observed MDP states and their MCTS policies
Sample sy and append it to o > sg is initialized based on sg
for ecach t € {0,...,T} do
7t — MCTS(net(0), sf, ¢, Q,N,P,W, S, search _depth)
a; < sample from
57,1 < observe from P(a}, L(s;)) > Next product MDP state
append s;41 to o, and m; to II
end for
Calculate ryrr, by evaluating o against ¢

- s} is the product MDP state of the ¢! step, while s, is the corresponding MDP state




4.5. Training and policy extraction

During training, generated trajectories (sequences of {s§,s7,...} in Alg. 1) with their
rewards (rprr, in Alg. 1) and sequences of MCTS policies (IT in Alg. 1) are kept in a buffer
and the network’s weights are updated on a number of random samples after each run.

Alg. 1 is computationally heavy and can be slow at run-time. Thus we propose a simple
method to extract a policy via Eq. 4.2 from the MCTS parameters after training.

m(s*) = argmax, N(s*) (4.2)

Training stops once the agent can fully solve the task from all valid initial states or after
a maximum number of iterations. Deploying the agent with this policy is computationally
much more lightweight and allows testing our method across a wide range of simulation-
based experiments, as presented in the next section.

5. Simulation Studies

In this section, the proposed approach, i.e., the extracted policy from Eq. 4.2 after train-
ing the agent via Alg. 1is compared to a state-of-the-art Q-learning based method, CSRL [1],
via three case studies. We also include the results of another approach, i.e., Q-learning with
counterfactual experiences for RMs (CRM) [19] in the case that was brought from their work.
Initial experiments showed that the extracted policy (Eq. 4.2) has similar performance to
that of Alg. 1 after training while being computationally much more tractable. All experi-
ments were conducted on a desktop computer with an AMD Ryzen 7 6800H (3,2 Ghz, 8 core,
16 thread) CPU, RTX 3070ti GPU, and 16 GB of RAM. The implementations were carried
out using Python, and the code is available at https://github.com/CL2-UWaterloo/RL-LTL.

5.1. Simulation setup

The dynamics of the environments are the same in all cases. The robot has four (MDP)
actions to choose from: going up, right, down, or left. The robot may or may not have
access to (LDBA) epsilon actions, depending on the LDBA’s structure. Taking an e-action
only changes the LDBA state of the product MDP, and not the location of the robot in the
environment (i.e., the MDP state). The environments can be deterministic or stochastic.
In the deterministic case, the robot always moves in the desired direction. In the stochastic
environment, the robot has a 0.8 probability of moving in the intended direction. There is
a 0.1 probability it will move to the left and a 0.1 probability it will move to the right of
the intended direction instead. Upon collision with a wall or an obstacle (grey areas), the
robot will stay at its location. We report success rates, i.e., the probability of satisfying the
task starting from a random initial position. All reported success rates are measured by
running 1000 test runs. The robot did not start any runs from cells where it was impossible
to satisfy the formula. Next, the case studies are discussed.

5.1.1. Case study 1 - sequential delivery with varying number of unsafe zones:

In this case, the robot must navigate in the environment shown in Fig. 3a which can
have up to 6 unsafe zones d (Fig. 3b), such that it satisfies the following LTL; formula:

¥ sequential delivery = O-d A (_‘C U b) A (_‘b U a) A Qe (51)

In other words, avoid unsafe zones d at all times, first visit ¢ and then visit b and then visit
¢ only in that order. The agent must not visit these labels in any other order, otherwise,
it has failed. As the number of unsafe zones increases, this particular case presents a high
chance of violating the specifications. As shown in Sec. 5.2, once the number of unsafe
zones crosses a certain threshold, Q-learning (CSRL) fails to find a solution to the problem.
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Figure 8. Environmets for the sequential delivery case (Fig. 3a), with up to six unsafe
zones (Fig. 3b). The craft-world (Fig. 3c) inspired from [2].

5.1.2. Case study 2 - Craft-world:

In [2] ten tasks are defined for a craft-world and they are brought here as LTL; objec-
tives?. The tasks include gathering resources to build tools and gaining access to the gold or
extracting the gem from the ore3. In this case study, CSRL cannot be tested on the ninth
task due to the limitations of its implementation. The ninth task, which is the hardest task
of all, involves gathering iron and wood (in any order) and taking it to a factory to build a
bridge, and then crossing the river to reach the gold (see Eq. 5.2).

® gg gold = Q((iron A O(wood A O( factory A Ogold)))V

5.2
(wood A O (iron A O(factory A Qgold)))) A O(—river V bridge) (5:2)

5.1.3. Case study 3 - Office world from [19]:

In this case, the robot must navigate in the office world environment shown in Fig.4 such
that it satisfies the following LTL; formula:

Poffice-world = O-d A O((m A OO(C A OOO)) \% (C A OO(m A OOO))) (53)
or in English, avoid decoration locations d at all times, and end up at o after visiting ¢ and
m in any order. The office-world is brought from [19]* along with the hardest task they
defined on it (Eq. 5.3).

5.2. Simulation results and discussion:

Sequential delivery case with differing number of unsafe zones (Eq. 5.1): In the
deterministic case, our approach fully solves the task in all seven environments within 30
steps. As a reference, the minimum number of steps required to solve the task from any
position is 25. Q-learning baseline (CSRL) only manages to solve the first four (up to three
unsafe zones) and fails to find a solution once four or more unsafe zones are added, for any
trajectory length. In the stochastic case, average success rates are shown in Fig. 5a. In this
plot, the agent’s trajectory length is fixed at 50. In this comparison, CSRL was training

20ur agent does not have the special use action that was available to the agent in [2].

3See rrl-ltl.github.io/RRL-LTL for the complete list of craft-world tasks, and sample playbacks of trajectories
generated for different cases.

4The office world from [19] was implemented with extra cells on each axis to recreate walls.
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for three million iterations for each environment, allowing for two orders of magnitude more
training time than our approach needs to solve the problems. The reason why CSRL cannot
solve three of the cases is possibly due to the LDBA accepting states being too hard to reach.
Q-learning relies on the propagation of the positive reward of these accepting states. As
the number of unsafe zones increases, it becomes more unlikely that these states are found.
As a result, its associated reward never propagates for the Q function to learn. However,
MCTS coupled with a neural network can still find satisfying trajectories in such scenarios.
The craft-world tasks (Sec. 5.1.2): In the deter- 0120345 6 7 8 9 1011203 1

ministic case, our approach fully solves all ten tasks
within 40 steps. As a reference, the minimum num-
ber of steps required to solve the hardest task from
any position is 29. CSRL cannot be tested on the
ninth task (Eq. 5.2) due to its implementation but
solves the rest within 40 steps. In the stochastic en-
vironments, our approach eventually achieves perfect
success rates given enough time steps and so does

CSRL on nine of the tasks. As an example, Fig. 5¢  : Q. . .0 .0
shows our average success rate for the ninth task (Eq.
5.2) with varying trajectory durations®. Figure 4. Environment for the office-world

The office-world task (Eq. 5.3): In the deter- (see Sec. 5.1.3)

ministic case, both our approach and CSRL fully solve the task within 70 steps. In the
stochastic case, our approach solves the task with a higher success rate when the agent is
given a short trajectory length to solve the task and, CSRL outperforms our method in
long trajectories (see Fig. 5b). As mentioned in Sec. 2, CSRL assumes an infinite horizon
when learning its policies, and therefore its performance degrades when given short trajec-
tory lengths to solve the task. But when allowed to run a long trajectory, its policy can
eventually solve the case. CRM [19] (source of this case study) shows they solve this task in
the deterministic case, starting from one initial state. Here, we tested their method in the
stochastic environment from random initial states and reported the average results across
60 independent runs (as they do in their work). As seen in Fig. 5b, CRM, with the reward
machine they designed for the task, does not offer the same performance as it did in the
deterministic environment. We posit CRM’s performance is hindered because the reward
machine, designed under the assumption of a deterministic environment, may not provide
appropriate signals for effective learning in a stochastic setting.

1009~ A 707 — our method 1004

) 5 60 Q-learning (CSRL)

80 — —— CRM
+ 50

60 @ 40
&

40 w 30
a
820 z _ _  —

801
60 1
40+

Success rate = 1 STD

Success rate = 1 STD

201 —— Our method S 20
Q-learning (CSRL) a 10 —— Our method
0 ol | | | | | | | 0
0 1 2 3 4 5 6 60 80 100 120 140 160 180 200 20 30 40 50 60 70
Number of unsafe zones in the environment Trajectory length (timesteps) Trajectory length (timesteps)
(a) sequential delivery (Sec. 5.1.1) (b) office-world (Sec. 5.1.3) (c) Task 5.2 in the craft-world

Figure 5. Results for the three case studies in stochastic environments (see Sec. 5.2).

Summary: Our proposed approach successfully solves complex tasks in environments pre-
senting a high chance of violating a safety specification (e.g., Fig 3b) where the baseline
method fails to solve the same tasks even in the deterministic setting. By treating time
(i.e., allowed trajectory length) as a limited resource, our approach achieves higher success

5 See rrl-1tl.github.io/RRL-LTL for similar plots of the other nine tasks.
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rates compared to existing solutions when given a short duration to solve tasks in stochas-
tic environments such as the one in Sec. 5.1.3. Finally, we tested our agent in a set of
tasks proposed by [2], and show our approach can tackle complex specifications that require
multiple levels of planning in stochastic environments.

6. Conclusion

This work presents a model-free RL approach that satisfies LTL; specifications in MDPs
with a priori unknown transition probabilities. Our approach first employs a neural network
combined with MCTS to generate runs that satisfy the task. We further extract a policy
from the MCTS parameters to make the approach amenable to online deployment and
testing. Extensive simulations demonstrate that this approach can successfully learn policies
to satisfy complex LTL; specifications within a given maximum number of steps (e.g.,
corresponding to robot battery life or time limit). This approach learns robust policies
for studied stochastic cases where either a state-of-the-art approach could not satisfy the
specification of interest or, performs better when given a limited trajectory duration.
Limitations and future work: While the simulation studies show the applicability and
performance of this approach across a range of problems, the proposed method does have
limitations. Primarily, unlike [1], the current approach does not have theoretical guaran-
tees of maximizing the probability of satisfying the LTL specification. Additionally, this
approach lacks completeness guarantees, i.e., it may fail to find a trajectory that satisfies
a specification, even when one exists. While our approach may lack theoretical soundness
guarantees, rigorous simulation evaluations demonstrate practical success in cases where
even state-of-the-art methods fail.

Future works aim to mitigate these limitations by embedding structure into the learned
policies to enable proof of completeness. We also aim to modify the proposed approach to
make the learned policies generalize to environments other than the ones they were trained
in, e.g., if the office world has additional decorations when the robot is deployed.®
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